GIFAS French Thermoplastics Initiative

iRT

JULES VERNE Philippe Le Bot, IRT Jules Verne Research & Technology Center for Manufacturing

Thermoplastic composite demonstrators

Thermoplastic Composite Demonstrators

GIFAS : French Initiative on Thermoplastic Composites for Aerospace Applications

Source : Thermoplastic composite demonstrators — EU roadmap for future airframes - Ginger Gardiner, Compositeworld.com

GIFAS

+

2

IRT Jules Verne Members & Partners :

34 Industrial companies (OEM, mid-cap) + 17 SME + 16 Technical Centers & Academics

IRT Jules Verne R&T Thematics

MOBILITY IN INDUSTRIAL ENVIRONMENT	Smart and Autonoumous mobility of Manufacturing Tools and Systems in Industrial Environment or Structures
MANUFACTURING FLEXIBILTY	Flexible and Agile Reconfigurable Manufacturing Processes
ASSEMBLY & JOINING TECHNOLOGIES	Multimaterials Joining Technologies Structure and Systems Assembly
FORMING & PREFORMING PROCESS	Composites Preforming and Forming Technologies Metal Forming
ADDITIVE MANUFACTURING	High Deposition Rate Metal Additve Manufacturing High Performance Composites Additive Manufacturing

Composite Technical Developments at IRT Jules Verne

Thematic Contribution

High Volume Complex Preform

High rate lay-up processes Complex / multifunctional preforms

Composites Shaping Process Design, prototyping and validation of forming processes

Multimaterial Structure & Assembly

.....

Design of multimaterial structures and automated assembling processes

Technical developments

- Conception & Design
- Function integration
- Low cost manufacturing Process

- Process Hybridation
- Thermal management

- Automation
- Assembly conception & design
- Joining technologies

Stamping and Overmolding development processes and its simulation COSMOS Project

Partnership :	IRT Jules Verne, LATECOERE, LIEBHERR, HUTCHINSON, ARKEMA, SINTEX NP, PORCHER, DAHER, COGIT, CEA, ARRK SHAPER	€ 3,5 M€ ³⁶ months
Main issues	To develop processes able to produce struc aeronautic parts in C/PEKK and C/PEEK ma functionalization	ctural and semi-structural terials adding

Objectives

- Optimize manufacturing process of stamping and overmolding in thermoplastic PEKK and PEEK
- Develop a tool concept compatible with process and materials
- Evaluate local overmolding process and mold development
- Develop a methodology of control of parts interfaces
- Develop a simulation tool to support process development

First prototype parts

Stamping and Overmolding development processes and its simulation COSMOS Project

Partnership :	IRT Jules Verne, LATECOERE, LIEBHERR, HUTCHINSON, ARKEMA, SINTEX NP, PORCHER, DAHER, COGIT, CEA, ARRK SHAPER	€ 3,5 M€ ³⁶ months
Different equipments	Stamping and overmolding platform 200T for first small parts Stamping and overmolding platform 1300T for industrials parts Mechanical test facility (multiaxial)	

Reproduction / communication of all or part of this document is prohibited © IRT Jules Verne

Induction welding of TP composites SOFUSIN

Partnership :

IRT Saint Exupéry, AIRBUS Operations, Aviacomp, Daher, Hutchinson, Stelia, LTeN

Main issues

To demonstrate the feasibility of a susceptor less direct continuous induction welding process for fuselage applications

Objectives

- Induction welding demonstration platform implementation
- Welding process parameter optimization

Screening of the effect of several intrinsic and extrinsic process parameters

• Welded joint properties and microstructure

Comparison between welded coupons and autoclave coconsolidated ones

Induction heating simulation

Comparison of static induction heating simulation capabilities of three simulation tools

Continuous induction welding for aerostructure

SIDEFFECT

- **Main issues** To demonstrate the feasibility of continuous induction welding process for fuselage applications
 - To develop simulation tools for thermoplastic induction welding.

Objectives

- Process window evaluation concerning robotized TP induction welding
- Conception of inductors, effectors and tool holding in order to optimize the welding.
- Modelisation of dynamical induction welding for TP composites.
- Demonstrator representative to fuselage application.

<mark>ÌRT</mark> JULES VERNE

Reproduction / communication of all or part of this document is prohibited © IRT Jules Verne

Continuous induction welding for aerostructure

SIDEFFECT

İRT JULES VERNE

Welding

Welding Temperature

Water Cooling

 t_2

t₁

(Boiling Heat Transfer)

Welding Pressure

JLES ERNE

Time

Numerical Simulation of induction welding

Continuous induction welding for aerostructure ÌRT JULES VERNE **SIDEFFECT** Cetim avia@mp AIRBUS EUROPE € 5,0 M€ () 30 months **Partnership** : IRT JULES VERNE -6 LATÉCOÈRE STELIA 02/2017 |08/2019 HUTCHINSON* INIVERSITÉ DE NANTE Effector Robot KUKA KR 480 Induction generator Tool holding Vacuum pump & cooling device Rail 16 m RT JULES VERNE

Induction welding of TP composites WELCOME

Heating head

Reproduction / communication of all or part of this document is prohibited $\ensuremath{\mathbb{C}}$ IRT Jules Verne

The High Thickness partsPartnership:✓Main issuesDevelopment of composite materials processes for the manufacturing of thick thermoplastic/carbon parts

User needs : Development of a manufacturing process for high thickness composite parts for primary structures focusing on :

- high volume
- low cost
- Thermoplastics
- Potential reduction of assembly tack time

Developments :

- Development of a composite demonstrator
- Simulation of the processes
- Development of NDC for thick parts
- Post treatments (machining, trimming, drilling) of thick parts
- Assembly of thick thermoplastic parts

JULES

VERNE

Low Cost & High rate process for Thermoplastic Composite Fuselage Frames

Objectives

- Comparative study of compatible composite processes
- Selection of processes/partners -
- Development of selected process
- Scale 1 demonstration

- Phase 1

Phase 2

Ì<mark>RT</mark> JULES VFRNF

> <mark>irt</mark> Jules Verne

Reproduction / communication of all or part of this document is prohibited $\ensuremath{\mathbb{C}}$ IRT Jules Verne

Thank you for your attention