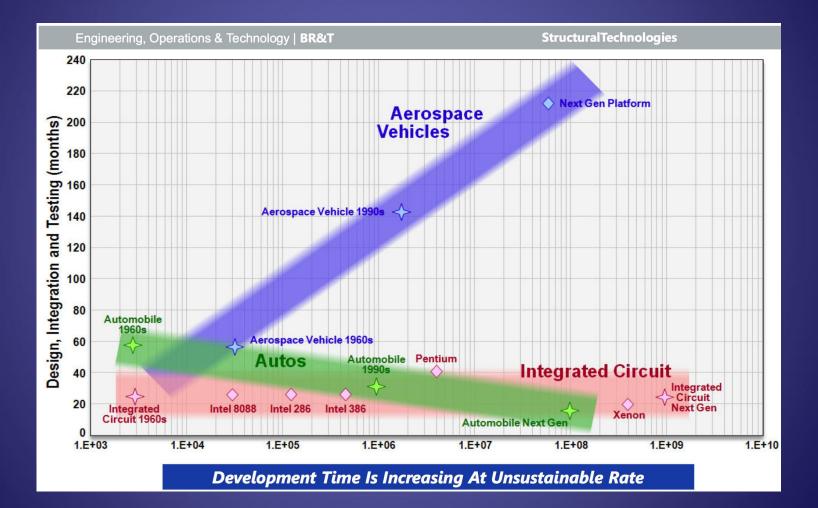
GET RID OF OLD LEGACY LAMINATES !

SOME CONSIDERATIONS ON A NEW DESIGN PARADIGM

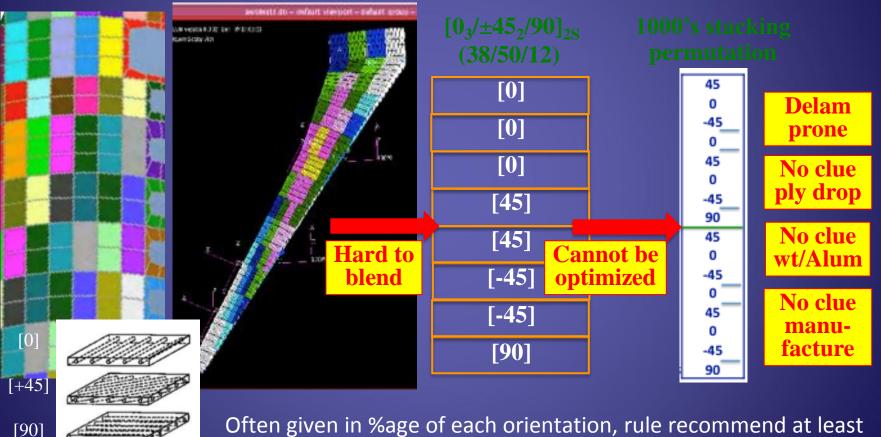
<u>Th. Massard^{1,2}</u>, S.W. Tsai², R. Harry ³, Ph. Sanial⁴

- 1 CEA, Cab HC, 91191 Gif s/Yvette, France
- 2- Stanford University, Department of Aeronautics and Astronautics, Palo Alto, Ca, USA
- 3 retired, Université de Bordeaux , 33405 Talence, France
- 4- Chomarat 07160 Le Cheylard
- * Corresponding author (thierry.massard@cea.fr)



OUTLINE

- WHAT IS A TRADITIONAL DESIGN METHOD ?
- WHY QUAD DESIGN HAS SOME LIMITATIONS ?
- WHAT IS A DOUBLE-DOUBLE LAMINATE DD ?
- WHY SHOULD YOU USE DD LAMINATES ?
- How can you design efficient DD laminates ?
- How can you build DD laminates ?
- Some perspectives and on-going works...

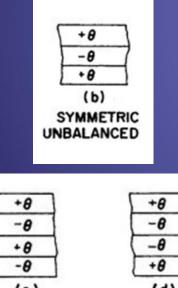

AN UNSUSTAINABLE RATE FOR DESIGN AND TESTING OF AERO COMPOSITE STRUCTURES

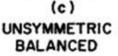
TRADITIONAL DESIGN METHOD FOR LAMINATES

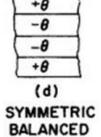
- USING ALL LAMINATION POSSIBILITIES CAN LEAD TO UNSYMMETRIC, UNBALANCED LAMINATES WITH COUPLING EFFECTS (BENDING/TWISTING, SHEAR/TENSION-COMPRESSION, ETC...)
 [A], [B], AND [D] ARE FULL
- OFTEN DESIGN RECOMMANDATIONS RULE THAT LAMINATES SHOULD BE BALANCED AND SYMMETRIC

SOME LIMITATIONS FOR QUAD LAMINATES: DISCRETE, HARD TO BLEND, NOT OPTIMIZED

[-45]

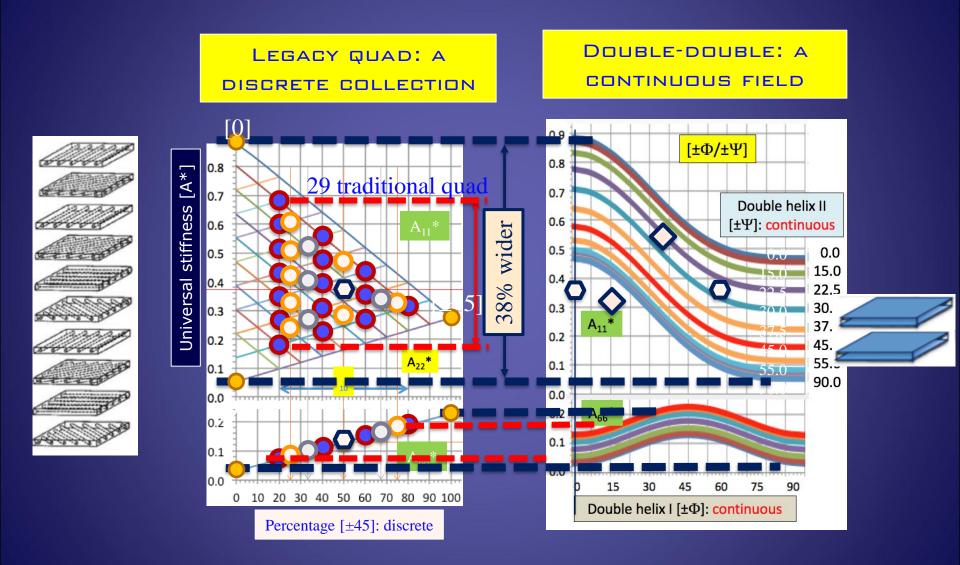

Often given in %age of each orientation, rule recommend at least 5% of each orientation to be used. But real life is in plies not in %age !


LAGACY QUAD IT'S A SMALL WORLD AFTER ALL


• 4 PLY SUB-LAM	1 POSSIBLE LAM.	MIN GAGE 1MM
• 5/6 PLY SUB-LAM	4 POSSIBLE LAM.	MIN GAGE 1,5MM
• 8 PLY SUB-LAM	10 POSSIBLE LAM.	MIN GAGE ZMM
• 10-PLY SUB -LAM. 2,5 MM	12 POSSIBLE LAM.	MIN GAGE
• 12-PLY SUB-LAMINATE	25 POSSIBLE LAM.	MIN GAGE 3MM

ANGLE-PLY LAMINATES

- IF AN ANGLE-PLY LAMINATE HAS AN EVEN NUMBER OF PLIES, THEN A16=A26= O.
- IF THE NUMBER OF PLIES IS ODD, AND IT CONSISTS OF ALTERNATING $+\theta$ and $-\theta$ plies, then not only is it symmetric ([B] = 0), but also A16, A26, D16, D26 ->0 as the NUMBER OF LAYERS INCREASES FOR THE SAME LAMINATE THICKNESS.
- SIMILAR TO SYMMETRIC CROSS-PLY LAMINATES, BUT WITH HIGHER SHEAR STIFFNESS AND SHEAR STRENGTH PROPERTIES.
 6th IC3 - June 2018 - Arcachan - France


WHAT IS A DOUBLE - DOUBLE LAMINATES ?

- A DOUBLE-DOUBLE LAMINATE IS A STACKING OF TWO ANGLE PLY LAMINATES $[\pm\theta/\pm\phi]$
- IF SUFFISANT NUMBER OF REPEAT IS ACHIEVED THEN DD LAMINATE IS HOMOGENEOUS AND DOES NOT HAVE TO BE SYMMETRIC (B IJ -> 0)
- THE MINIMUM GAGE IS ALWAYS 4 PLIES = 0,5MM
 (EVEN SMALLER USING THIN PLIES)

AN IMPORTANT RESULT WITH DD LAMINATES

- Which ever stiffness, which ever strength is required, there is always a combination of two angles θ and ϕ giving a double/double $[\pm\theta/\pm\phi]$ with the required properties
- THE LAMINATE IS A 4 PLY SUB-LAMINATE REPEATED AS NEEDED. IT IS THE SIMPLIEST POSSIBLE LAMINATE STACKING. NO NEED FOR SYMMETRY.

WHY USE DD TO REPLACE LEGACY QUAD ?

Materials

M40J/epoxy IM6/epoxy IM7/977-3 T300/5208 IM7/MTM45 T800/Cytec IM7/8552 T800S/3900 T300/F934 T700 C-Ply 64 AS4/H3501

• Structure

• Loads

N1	N2	N6
1,0	0,0	0,0
-1,0	0,0	0,0
0,0	0,0	1,0
1,0	0,0	0,5
-1,0	0,0	0,5
0,0	0,0	0,5
0,0	0,0	0,5

EASY DESIGN WITH TRACE AND UNIT CIRCLE

- MATERIAL CHARACTERIZATION IS REDUCED TO ONE TEST
- USING THE UNIVERSAL LAMINATE, CHOICE OF MATERIAL BECOME VERY SIMPLE
- FAILURE PREDICTION AT FPF OR LPF CAN BE EASILY DETERMINE WITH THE UNIT CIRCLE CRITERION. REQUIRES ONLY X AND X'
- FAST CALCULATION IS A KEY TO OPTIMIZE

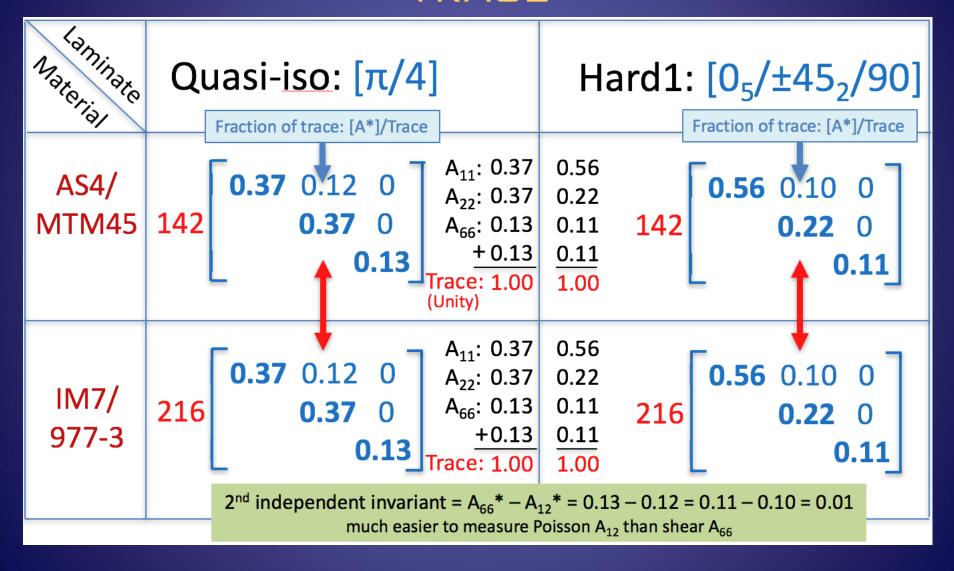
TRACE

Orthotropic
4 constants

$$Q_{xx} = \frac{E_x}{1 - v_x v_y}, \quad Q_{yy} = \frac{E_y}{1 - v_x v_y}, \quad Q_{xy} = v_x Q_{yy} = v_y Q_{xx},$$

$$Q_{ss} = E_s$$
Square symm
3 constants

$$Q_{xx} = Q_{yy} = \frac{E_x}{1 - v_x^2}, \quad Q_{xy} = v_x Q_{xx}, \quad Q_{ss} = E_s$$
Isotropic
2 constants

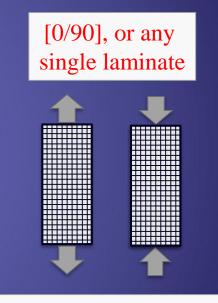

$$Q_{xx} = Q_{yy} = \frac{E}{1 - v^2}, \quad Q_{xy} = \frac{vE}{1 - v^2}, \quad Q_{ss} = \frac{E}{2(1 + v)}$$
Trace
1 constant

$$Trace = Q_{xx} + Q_{yy} + 2Q_{ss}$$

TRACE: CENTER OF COMPOSITES WORLD

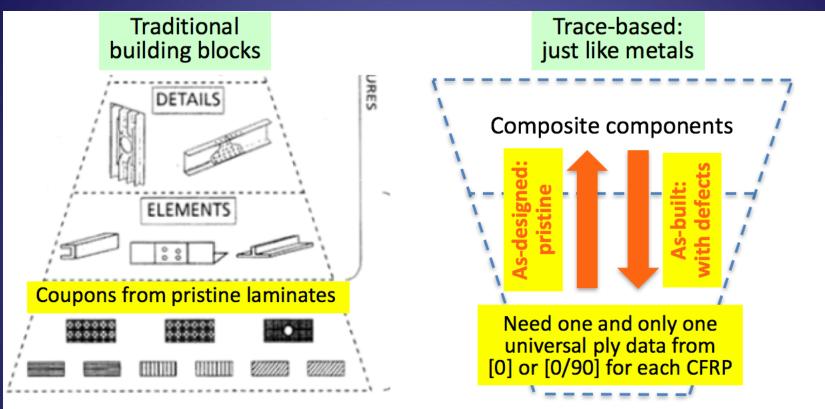
Laminate Material	Quasi-iso: [π/4]	Hard1: [0 ₅ /±45 ₂ /90]			
AS4/ MTM45	53/142 = 0.37 Fraction of trace	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
IM7/ 977-3	Longitudinal A ₁₁ : 80 80 24 0 80 0 2 shear A ₆₆ : 28 <u>+ 28</u> Trace: 216	49 Longitudinal \rightarrow 121 20 0 23 Transverse \rightarrow 49 0			

UNIVERSAL LAMINATES: FRACTIONAL TRACE



UNIVERSAL LAMINATE

- ALL CFRC CAN BE REPRESENTED BY A NORMALISED MATERIAL, AND ALL LAMINATE USING IT ARE UNIVERSAL LAMINATES.
- THE NORMALIZING FACTOR IS TRACE
- TRACE IS A MECHANICAL PROPERTY OF A CFRC
- KNOWING TRACE ONE CAN DEDUCT ALL THE ELASTIC PROPERTIES OF A COMPOSITE LAMINATE.
- CHARACTERIZATION OF A COMPOSITE IS EASY :
 ONLY ONE TEST TO MEASURE TRACE


3-PARAMETER CFRP PLY DATA AND TEST METHOD

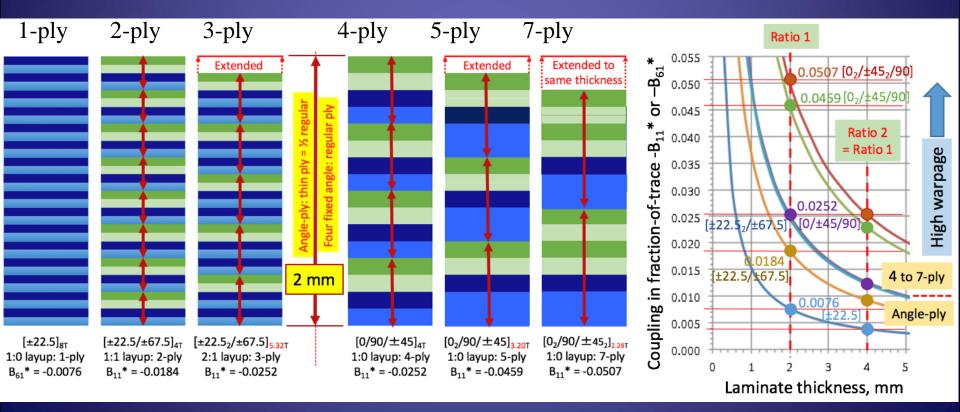
	А	В	С	D
1	Material	Trace, GPa	X, MPa	X', MPa
2	M40J/epoxy	276	3550	1500
3	IM6/epoxy	232	3500	1540
4	IM7/977-3	218	3250	1600
5	T300/5208	206	1500	1500
6	IM7/MTM45	195	2500	1700
7	T800/Cytec	183	3768	1656
8	IM7/8552	192	2326	1200
9	T800S/3900	168	3000	2500
10	T300/F934	168	1314	1220
11	T700 C-Ply 64	163	2530	1669
12	AS4/H3501	162	1447	1447
13	T650/epoxy	160	2194	1653
14	T4708/MR60H	158	2524	1700
15	T700/2510	144	2172	1450
16	AS4/MTM45	143	1867	1398
17	T700 C-Ply 55	139	2944	1983

Matrix, processing, and quality are reflected in Trace-X-X'

HOW MANY COUPONS? ONE OR ZERO

Too many coupons Laminates are not material tests Too long and too expensive Prevent new material/process Make structures non competitive A test program for performance assurance:
1) Test [0] coupons for E_x for trace, X and X'
2) Test <u>Tr</u>, <u>X</u>, <u>X'</u> from as-built laminates with

a) natural defect, & b) induced damage

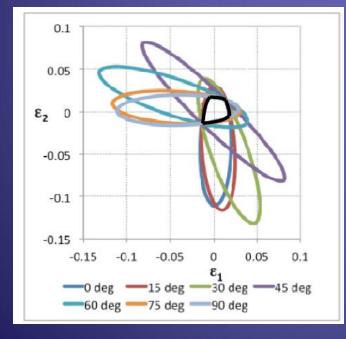

3) Recalibrate structure with reduced trace

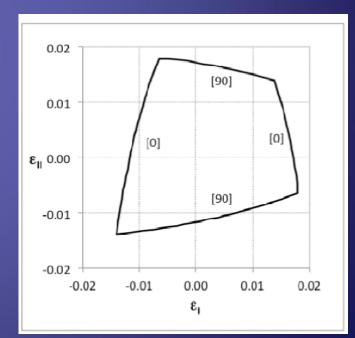
TRANSVERSE HOMOGENEITY: WITH ANGLE-PLY

Mid-ply symmetry not required: faster layup, simple ply drop More repeats: less delamination; Relative homogenization ≠ h; absolute values = 1/h

Angle-ply

4 fixed angle quad

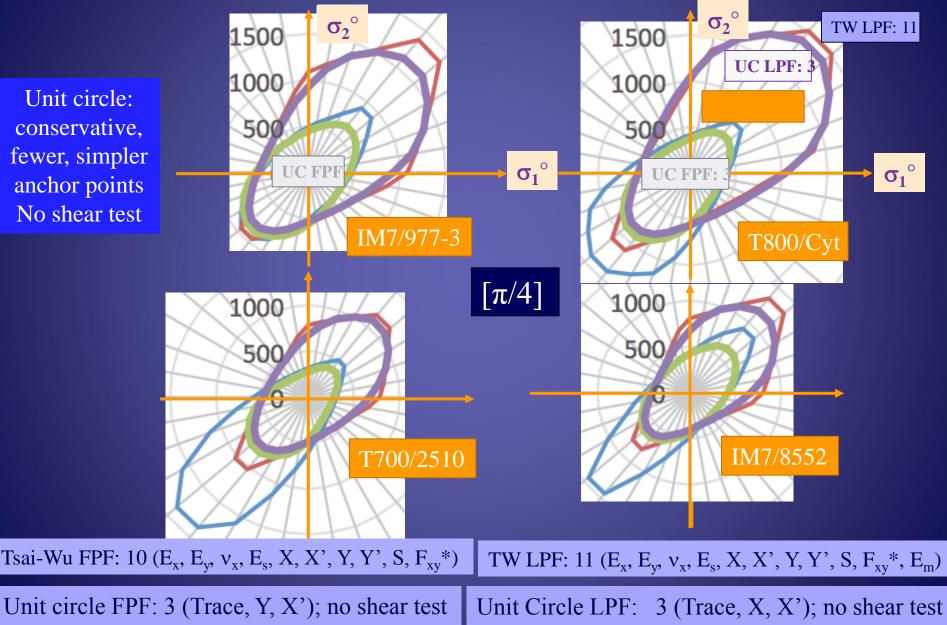



DESIGN FOR STRENGTH

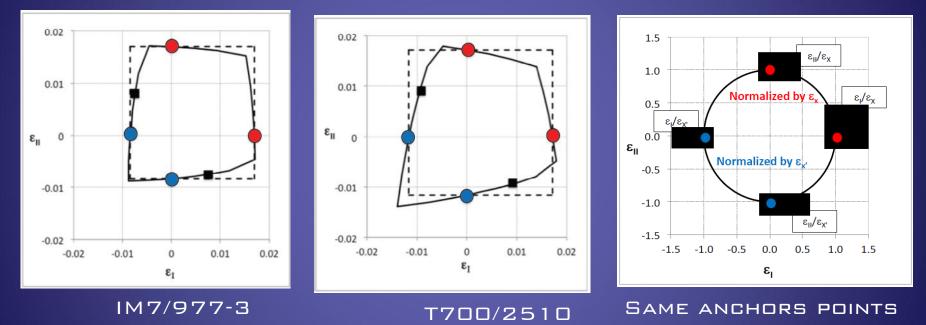
- DESIGN FOR STRENGTH IMPLIES TO KNOW AMONG ALL THE APPLIED LOADS, WHICH IS THE CONTROLLING LOAD
- IN THE CASE OF A COMPOSITE SOLUTION, THE CONTROLLING LOAD DEPENDS ON THE LAMINATE SOLUTION
- SO ALL THE LOADS HAVE TO BE CONSIDERED TOGETHER IN THE DESIGN, AND ONLY WHEN THE LAMINATION IS CHOSEN, ONE CAN IDENTIFIED THE CONTROLLING LOAD

SIMPLER FAILURE CRITERION

• OMNI FAILURE CRITERIA

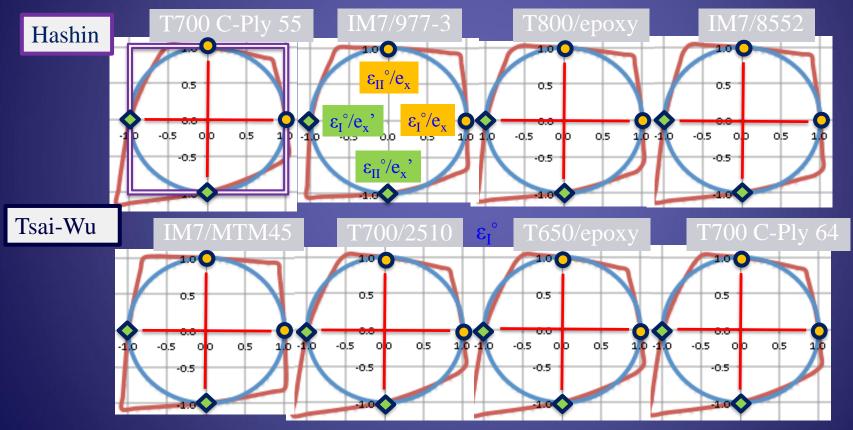


6th IC3 – June 2018 – Arcachan - France


Omni Stress: Tsai-Wu vs Unit Circle

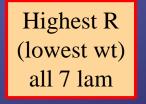
Unit circle: conservative, fewer, simpler anchor points No shear test

UNIT CIRCLE


OMNI STRAIN LPF ENV FOR TWO CFRP BASED ON TSAI WU (SOLID LINE) AND MAX STRAIN (DASHED LINE)

Ref. Tsai SW and Melo JDD. A unit circle failure criterion for carbon fiber reinforced polymer composites. *Composites Science and Technology* 123 (2016) 71-78.

UNIT CIRCLE VS LPF OMNI ENVELOPE: CFRP


Normalized by uniaxial tensile and compressive failure strains

FIND BEST LAMINATE: 7 LAMINATES/7 LOAD SETS

`	IM7	7/977-3	3	(20/20/60)	(20/30/50)	(20/40/40)	(20/50/30)	-(20/60/20)	(20/70/10)	(20/80/0)	0 ±45 90	
		2	0%{[0]	%[±45]	٦			Highest	R/lowe	est wt fo	or one l	oad in set
Load set	sig1	sig2	sig6	20	30	40	50	60	70	80	max	
1	1.0	0.0	0.2	802	872	907	900	841	719	531	907	
2	1.0	2.0	0.0	908	1067	1203	1268	1179	914	522	1268	
3	1.0	0.0	0.0	353	375	393	406	408	357	230	408	
4	1.0	0.0	4.0	59	76	93	109	125	139	150	150	
5	-1.0	-2.0	0.0	413	425	419	388	334	260	178	425	
6	1.0	0.5	0.0	990	1081	1172	1264	1356	1451	1550	1550	
7	0.0	7.0	0.0	284	240	199	161	126	92	61	284	
			min	59	76	93	109	125	92	61	125	

LAMSEARCH : A NEW TOOL TO SCALE GUIDE , AND RATE LAMINATE DESIGN

- DESIGN FOR STIFFNESS :
 - FIND THE BEST DD LAMINATE FOR A GIVEN AIJ MATRIX
 - FIND THE BEST EQUIVALENT STIFFNESS DD FOR A GIVEN QUAD
- DESIGN FOR STRENGTH
 - FOR A GIVEN SEET OF LOADS (7 LOADS)
 - FIND THE BEST QUAD LAMINATE
 - FIND THE BEST DD LAMINATE
 - DESIGN FOR PRISTINE MATERIAL OR FOR MATERIAL
 WITH A HOLE (DAMAGE ASSESMENT)

- SELECTION OF MATERIAL
 Material selection
 Trace (GPa)
 X (Mpa)
 X' (Mpa)
 Ex (Gpa)
 1500
 182
- BEST DD REPLACEMENT

Legacy Quad			Best fit Double-dble intact crit(A11,A66)				Conv. Ratio		
%[±0]	25	<0-100>	A11	67,5	[±PHI]	26,00	A11	66,8	0,99
%[45]	30	<0-100>	A66	18,5	[±PSI]	88,00	A66	19,4	1,04
%[90]	45	<-deducted	A22	101,9			A22	100,9	0,99

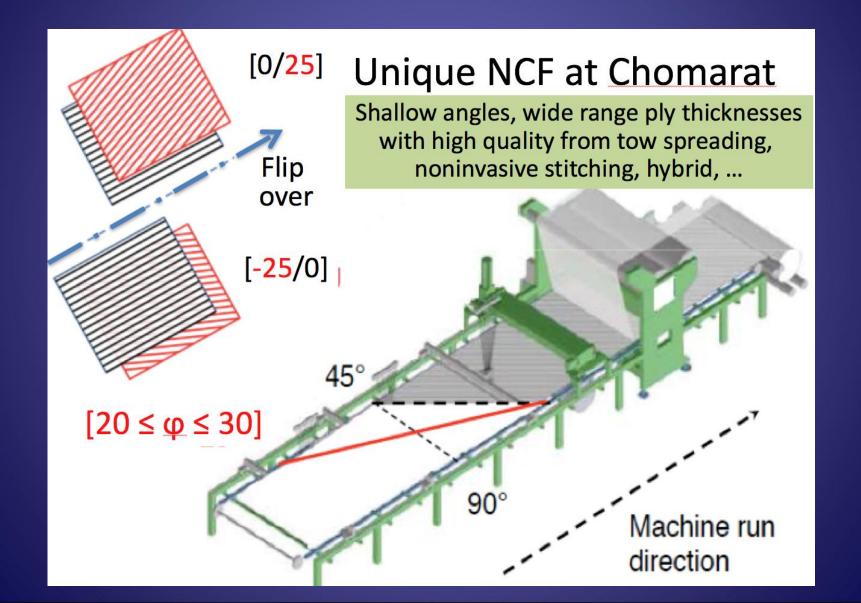
 BEST DD LAMINATE FOR AN OBJECTIVE STIFFNESS [A]

Given	[A]	Best fit	double-	double		Conv. Ratio
A11	95,0	[±PHI]	77	A11	88,5	1,31
A66	14,5	[±PSI]	13	A66	14,5	0,78
A22	82,5	<- deducted		A22	89,1	0,87

6th IC3 – June 2018 – Arcachan - France

BEST DESIGN FOR STRENGTH

LOADS


_	Set 3. Wings hlade									
	Set 2: Fuselage									
Load case	MN/m	MN/m	MN/m	,0 0	0,0					
Load 1	2,0	0,0	0,0	,0	0,0					
Load 2	-1,0	0,0	0,0	,0	0,0					
Load 3	0,0	0,0	1,0	,5	0.5					
Load 4	1,0	2,0	0,5	.5	0,5					
Load 5	-1,0	0,0	0,5	, <u> </u>	0,5					
Load 6	0,0	0,0	0,5	,>	0,5					
Load 7	0,0	0,0	0,5	,5						

Legacy		Double-		
quad	Unit circ	double	Unit circ	Ratio
R/smooth	237	R/smooth	249	105%
%[0]	30	[±PHI]	21	
%[±45]	50	[±PSI]	67	
%[90]	20			
Number	1	Number	1	
R/notched	94	R/notched	98	104%
Smth/notd	2,5	Smth/notd	2,6	
%(wt/alu			F20/	
m)	57%	%	52%	
A11	77,2	A11	71	
A22	59,1	A22	67	
A66	22,7	A66	22	
A12	22,7	A12	22	
Trace	181,7	Trace	182	
OHT, MPa	188	ОНТ, МРа	197	105%
OHC, MPa	188	ОНС, МРа	197	105%

Best laminate in double-double for 4 load sets

oublo									
ouble			WIDE	BAND	IM7	/977-3	FU	SELAGI	E
±	Φ\±Ψ	52.5	60.0	67.5	75.0	52.5	60.0	67.5	75.0
		Iard ³⁴	269	179	90	Hard ²⁹⁹	410	304	166
	7.5	358	293	203	114	296	418	333	204
	15.0	423	358	269	179	283	432	392	293
	22.5	336	448	O 358	269	248	419	408	361
	30.0	214	Soft ³¹⁰	365	358	187	Soft 297	332	337
	WING						SHA	FT	
<u>±</u>	:Φ\±Ψ	52.5	60.0	67.5	75.0	52.5	60.0	67.5	75.0
	0.0	Harð ⁴⁴	418	304	166	Hard ³³⁴	269	179	90
	7.5	324	437	333	204	358	293	203	114
	15.0	268	373	392	293	424	358	269	179
	22.5	191	279	OI 361	361	383	419	OI 358	269
	30.0	113	Soft 181	247	301	228	Soft 297	332	337

C-PLY: BI-ANGLE NON CRIMP FABRIC

NCF MANUFACTURING PROCESS

CARBON FIBER TAPE LAYING

A NEW DESIGN PARADIGM ?

- PRELIMINARY DESIGN AND CHARACTERIZATION CAN BE FASTER AND CHEAPER USING THE 3 DATA CHARACTERIZATION (TR, X, X')
- PREDICTION BY SIMULATION OF A AND B ALLOWABLE OF SMOOTH AND OPEN-HOLE COUPONS IS EFFICIENT
- Double double angle ply laminate is simple, easy to design and to manufacture and have unique advantages over conventional quad laminates
- THIN PLY BUILT-IN LAMINATES GIVE NATURAL HOMOGENIZED PROPERTIES (N>16, DO NOT REQUIRE SYMMETRIC STACKING TO PREVENT WRAPPING AFTER CURING, AND ALLOW SIMPLE DROP PLY STRATEGY

SUMMARY AND Future Outlook

- SEVERAL COMPARISON TESTS BETWEEN DD AND QUAD ARE UNDERWAYS ON LARGE SCALE STRUCTURES
- DESIGN OF DD WITH LARGE NUMBER OF LOADS
- SYSTEMATIC AND/OR RANDOM GENERATION OF LOADS
- New versions of LamSearch to be released Theor Design and automatice of analysis Design workshop)

THANK YOU FOR YOUR ATTENTION!

Acknowledgment for support :

REFERENCES

- Composite Materials Design and Testing, Stanford University, Department of Aeronautics & Astronautics (2015)
- "An invariant-based theory of composites," *Composite Science and Technology* 100 (2014) 237-243
- "A unit circle failure criterion ...," Composite Science and Technology 123 (2016) 71-78
- With A. Arteiro, "A trace-based approach to design ...," J. Reinforced Plastics & Composites (2016)