

IC3 – Arcachon

Innovative Heating Solution for Automatic Fiber Placement of Dry Fibers & TP

Rédigé par:

s.deseur@estia.fr 05.59.44.28.85

une plateforme d'innovation INSTITUTE OF TECHNOLOGY

Indice	date	Commentaires
Α	04/06/2018	Creation

COMPOSITADOUR => What - Where - Why??

Compositation is a technological platform specialised in advanced processes: Composites, Robotics and Additive Manufacturing.

For 8 years, in partnership with industry, Compositadour initiates and carries out R&D project for new parts and manufacturing processes with outstanding research teams

Compositadour is an entity of engineering School ESTIA and was founded by industrial partners and regional organization

COMPOSITADOUR => What - Where - Why??

 To help businesses appropriate these new technologies (Composites, robotic and 3D printing), Compositadour carries out the following missions:

=> R&D, Training and technology transfer

- o Generally, Compositadour's activities are on a maturity level between TRL3 and TRL6.
- Compositation meets the needs of the industry, from the design to the development of processes and new / improved products, through prototyping and even industrial pre-launch on different subjects:

LMDP / CMT **AFP** Infusion Cobots Robotization **RTM** Dry fiber stamping Composites part design In situ Metal 3D print **Thermoplastic** Simulation Ultra-sonic inspection **LDS** Complex parts Humm 3 Pick and place

OTD/OQD CADFiber

TRL 2 to 7 Laser Qualification

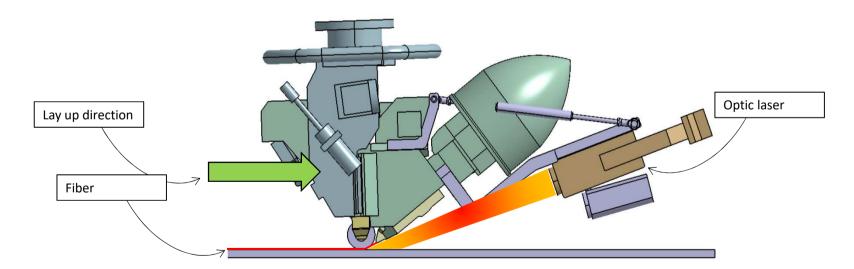
Robot accuracy improvement Final element analysis

thermoset Special machine design

Focus on Automatic fiber placement in COMPOSITADOUR

Compositadour works since 8 years on Automatic fiber placement with 16 tows Coriolis machine.

Dry fiber, thermoset and thermoplastic prepreg have been lay up from the beginning on large, small and complex parts



Focus on Automatic fiber placement => Why heat with laser?

Thermoset prepreg material are tacky. We only have to increase T°C around 50°C during lay up to have good adhesion.

Due to high thermal fusion of thermoplastic prepreg and dry fiber binder (around 160°C and 350°C), IR lamps are not powerful enough to reach these temperatures at high layup speeds.

Solution => to use laser!

Focus on Automatic fiber placement with laser heating system => Results!!

After several years of development at compositadour and, in other research institutes, lay up with laser heating system present today a good maturity!

Dry fiber

Very fast lay up speed on simple geometries (1m/s)

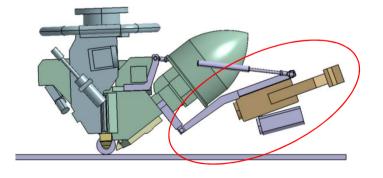
Very good lay up quality on complex geometries

Thermoplastic prepreg

Very fast lay up speed on simple geometries (1m/s)

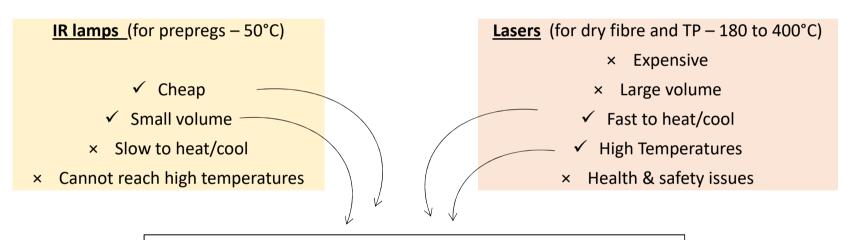
Very good lay up quality on complex geometries

Very good material health on in situ (simple geometries) and "OoA" parts


Focus on Automatic fiber placement with laser heating system => Why trying to change??

Because laser:

- Have safety issues
- Have a very large volume
- Is expensive
- Mono wavelength
- is very dependent on the emissivity of the area to be heated

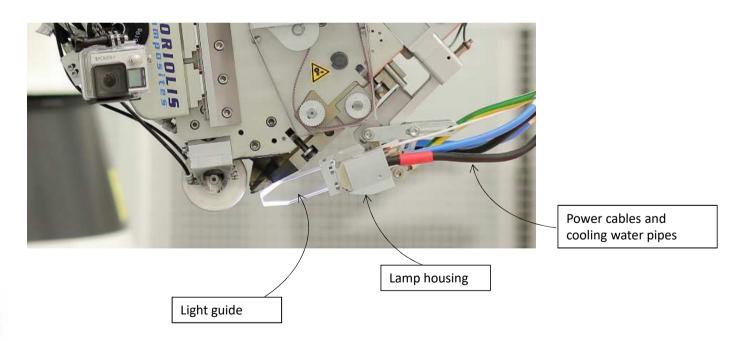


FOCUS on alternative heating solution for AFP

=> Today only two heating systems are installed on standard AFP machines with very important differences in characteristics.

What about fast, safe, small and competitive heating system ??!

Gap in the market



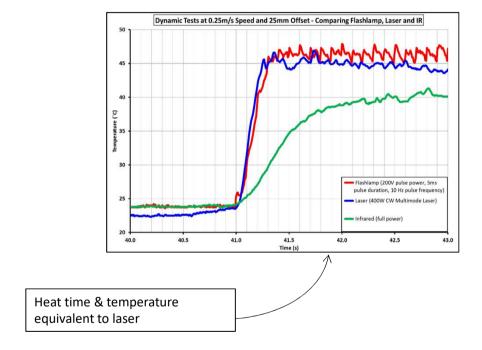
FOCUS on alternative heating solution for AFP => Flash lamp!!?

Following the first results obtained at the NCC and at Coriolis, COMPOSITADOUR has chosen to start development on thermoplastic and dry fiber layup with the **Humm 3** Heraeus technology

A high power flashlamp (xenon) is contained within a small, scalable housing. The pulsed energy is guided to the nip point by means of a transparent guide block, which can be customised for different materials and applications.

FOCUS on alternative heating solution for AFP => Flash lamp!!?

Broadband Source – absorption at many wavelengths:


- Pulsed energy spread over visible and IR wavelengths
- Homogeneous levels of absorption between Fibers, binder and resin

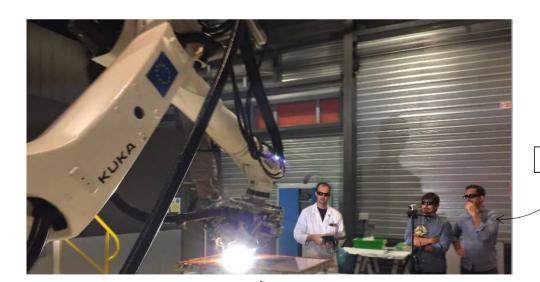
Pulsed source – control of surface temperature via:

- Pulse frequency (pulses per second)
- Pulse Duration (short or long pulses)
- Pulse Energy (large or small energy pulses)

○ Safe Source – no requirement for separate laser booth:

- Bright light source
- Operators can remain close to lay-up

Experiments on moving targets have shown the heating rate of humm3 is equivalent to laser, and much faster than IR lamps. This is also true for cooling - humm3 has no residual heat.

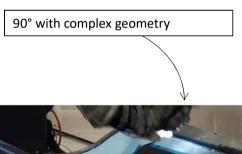


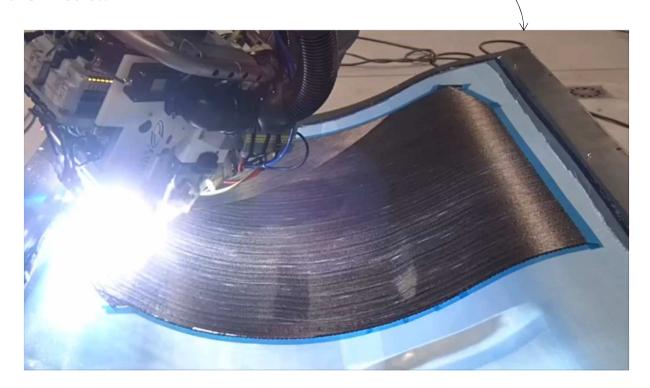
Flash Lamp => trials done in COMPOSITADOUR

The first developments at Compositadour focused on the comparison between the laser and the flash lamp.

The research focused on:

- Lay up quality
- Material health after infusion / injection for dry fibers
- Material health and mechanical properties after consolidation (autoclave, OoA and in situ) for Thermoplastic prepeg

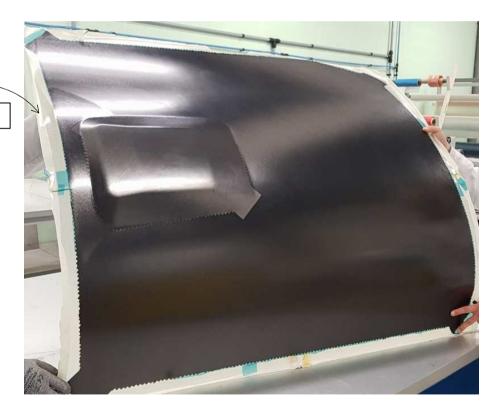

Operators can remain close to lay-up



Flash Lamp => Result on Dry fibers

Manufacture of Dry fiber panels with infusion process Level of maturity similar to the laser reached in a few hours!!

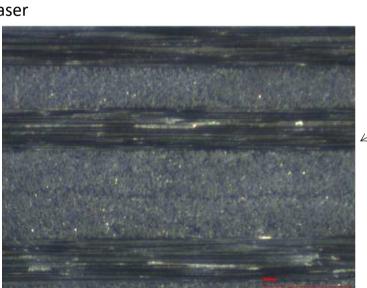
45° orientation



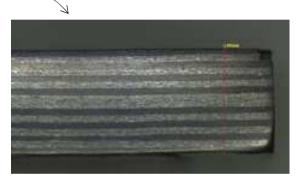
Flash Lamp => Result on Dry fibers

Manufacture of Dry fiber panels with infusion process
Level of maturity similar to the laser reached in a few hours!!

Result after Hitape Layup and RTM6 infusion


Flash Lamp => Result on Thermoplastic prepreg

Level of maturity similar to the laser reached in a few days!!

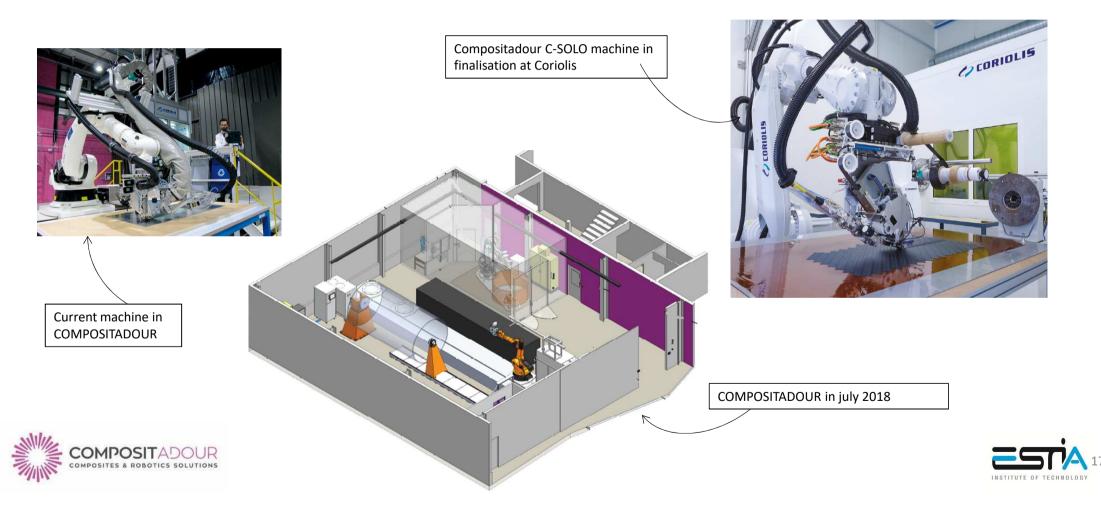

Trials done with PEAK and PEEK materials on:

- Autoclave consolidation
- Out of autoclave consolidation
- In situ consolidation

=> results similar to laser

Out of autoclave consolidation micro cut

In situ consolidation micro cut



What about next steps!!

Integration of last Humm 3 update in compositadour on C-SOLO and C1

Development on Dry fibers

Start to develop complex geometries parts

Manage thermal control

Development on Thermoplastic prepreg

Start to develop complex geometries parts

Manage thermal control

Increase lay up speed for out of autoclave and in situ consolidation

Questions??!

Director

Composites Simon DESEUR

E: s.deseur@estia.fr **T**: +33 (0)5 59 44 28 85

Director
Francis SEDEILHAN
E: f.sedeilhan@estia.fr
T: +33 (0)5 59 44 28 82

What about robots??

Vincent MAGIMEL PELONNIER E:v.magimel@estia.fr T:+33 (0)5 59 44 28 83

Really?? You 're able to print metal!!

