

CONDUCTIVE NANOCOMPOSITES AS HEATING ELEMENTS FOR RESISTANCE WELDING

David Brassard, Martine Dubé, Jason R. Tavares, With the collaboration of Audret Menochet, Brigitte Defoort, Guy Larnac

June 4, 2018

FROM LAMINATE TO PRODUCTS

Parts

Products

Assemblies

*CompositeWorld

FROM LAMINATE TO PRODUCTS

JOINING COMPOSITE PARTS

- ► Fasteners
- Adhesive bonding

JOINING COMPOSITE PARTS

- Fasteners
- Adhesive bonding
- Welding

Welding

To join pieces of material by melting or softening the points that touch and pressing them together.

WELDING PROCESSES

RESISTANCE WELDING

Heating elements

- ► Carbon fibre (CF)
- Stainless steel (SS) mesh

Traditional welding stack

TRADITIONAL HEATING ELEMENTS

< ☞ > < 클 > < 클 > · 클 =
 < ○
 < 6/22

TRADITIONAL HEATING ELEMENTS

CF heating elements

- Inconsistent results
- Poor weld uniformity
- ► Electrical connection issues

TRADITIONAL HEATING ELEMENTS

CF heating elements

- Inconsistent results
- Poor weld uniformity
- Electrical connection issues

Stainless steel mesh

- \nearrow reliability and performances
- ▶ Poor bonding with the polymer [1–5]
- \nearrow % of open area \Rightarrow \nearrow performance [1]
 - ▶ 100% open area \Rightarrow compression-molding

Good bonding with the polymer matrix

- Good bonding with the polymer matrix
- ► Uniform heating in the weld

- Good bonding with the polymer matrix
- Uniform heating in the weld

How can we achieve this?

- Good bonding with the polymer matrix
- Uniform heating in the weld

How can we achieve this?

Miscible heating element

- Good bonding with the polymer matrix
- Uniform heating in the weld

How can we achieve this?

- Miscible heating element
- High electrical conductivity

AN ALTERNATIVE HEATING ELEMENT

MWCNTs

- Rod like structure
- High elasticity modulus
- High mechanical strength
- High thermal and electrical conductivity
- Good thermal stability
- High specific surface area

Polyetherimide

- Low elastic modulus
- Low thermal and electrical conductivity
- Miscible with PEEK
 - Commonly used for resistance welding of CF/PEEK laminates

AN ALTERNATIVE HEATING ELEMENT

MWCNT	Ts Polyetherimide	_
► Roc	MWCNTs nanocomposite	
► Hig	 Increased mechanical strength 	cal
► Hig	► Increased thermal conductivity (0.7 W m ⁻¹ K ⁻¹)	
► Hig	► Increased electrical conductivity (0.8 S cm ⁻¹)	
eleo	Isotropic properties	F
► God	► Miscible with PEEK	
► Hig	specific surface area	1

ALTERNATIVE WELDING STACK

Traditional welding stack

Nanocomposite welding stack

CF/PEEK Adherents

-Nanocomposite

Conductive nanocomposite heating element

- Simplified handling
- Improved bonding

IC3 2016

 $\begin{array}{l} \mbox{Resistive heating of a polymer based nanocomposite} \\ \mbox{PEEK} + \mbox{MWCNTs} \end{array}$

NANOCOMPOSITE COMPOSITION

- Mixed with a twin-screw micro-compounder
- PEI from Sigma-Aldrich
- MWCNTs from Raymor industries
- XGnP from XG Sciences Inc.
- **CNF** from Pyrograf Products Inc.

Four-point probe technique

WELDING SETUP

- Computer controlled welding jig
- Temperature monitoring (not shown)
- Programmable DC power source
- Pneumatic actuators
- Force sensor

TEMPERATURE MONITORING

WELDED SPECIMEN

- ► PEI nanocomposite
- 10% weight fraction MWCNTs
- ▶ 0.5 mm initial thickness
- $\blacktriangleright \ \sigma = 0.79 \, \mathrm{S} \, \mathrm{cm}^{-1}$
- Pressure over the weld 1 MPa

WELDING CONDITIONS

Constant voltage operation

- Initial experiments
- ▶ 60, 62.5 and 65 V
- ▶ 60 s
- Inconsistent results (power variations)

WELDING CONDITIONS

Constant voltage operation

- Initial experiments
- ▶ 60, 62.5 and 65 V
- ▶ 60 s
- Inconsistent results (power variations)

Constant power operation

- ▶ 350 kW m⁻²
- ▶ 60, 70, 90 and 120 s
- Repeatable results
- Clamping distance 0, 1 and 1.5 mm

TEMPERATURE MONITORING

- ► 350 kW m⁻²
- ▶ 120 s
- Pressure on the weld 1 MPa
- Clamping distance 1.5 mm

SINGLE LAP SHEAR RESULTS

Clamping distance [mm]	Time [s]			
	60	70	90	120
0				14.5 ± 1.3
1				13.0 ± 4.4
1.5	16.4 ± 7.8	18.6 ± 2.0	15.5 ± 3.8	19.6 ± 3.5

Average shear strength in MPa \pm Standard deviation

MICROGRAPHY ANALYSIS

 290 kW m^{-2} , 600 s, 1 MPa welding pressure and 0 mm Clamping distance

 Lower electrical conductivity of the heating element requires higher operating voltage

- Lower electrical conductivity of the heating element requires higher operating voltage
 - The process is more prone to current leakage

- Lower electrical conductivity of the heating element requires higher operating voltage
 - ► The process is more prone to current leakage
 - UD laminates as a solution
 - Thicker nanocomposite film

- Lower electrical conductivity of the heating element requires higher operating voltage
 - ► The process is more prone to current leakage
 - UD laminates as a solution
 - Thicker nanocomposite film
- Brittle cohesive failure within the heating element is the main failure mode
 - Increasing its toughness

CONCLUSION

- Investigation of
 - alternative welding parameters
 - ► the parameters leading to the creation of porosity
- A nanocomposite heating element is a viable alternative for resistance welding of CF/PEEK composites

ACKNOWLEDGEMENTS

arianeGroup

Centre de recherche sur les systèmes polymères et composites à haute performance

BIBLIOGRAPHY

- M. Dube, P. Hubert, J. N. Gallet, D. Stavrov, H. E. Bersee, and A. Yousefpour. Metal mesh heating element size effect in resistance welding of thermoplastic composites. *J. Compos. Mater.*, 46:911–919, 2012.
- [2] M. Dubé, P. Hubert, a. Yousefpour, and J. Denault. Resistance welding of thermoplastic composites skin/stringer joints. *Compos. Part A Appl. Sci. Manuf.*, 38:2541–2552, 2007.
- [3] Martine Dubé, Pascal Hubert, Jan N a H Gallet, Darko Stavrov, Harald E N Bersee, and Ali Yousefpour. Fatigue performance characterisation of resistance-welded thermoplastic composites. *Compos. Sci. Technol.*, 68:1759–1765, 2008.
- [4] Huajie Shi. Resistance welding of thermoplastic composites: Process and performance. PhD thesis, TU Delft, Delft University of Technology, 2014.
- [5] Huajie Shi, Irene Fernandez Villegas, Marc-André Octeau, Harald E.N. Bersee, and Ali Yousefpour. Continuous resistance welding of thermoplastic composites: Modelling of heat generation and heat transfer. *Compos. Part A Appl. Sci. Manuf.*, 70:16–26, 2015.

CONTACT RESISTANCE

1.6 mm thick sample

ANALYSIS OF POROSITY

Virgin PEI 1.25 \pm 0.02 g cm $^{-3}$

Nanocomposite 1.32 \pm 0.01 g cm^{-3}

Sample number	M _{air}	M _w	Density	Porosity
	[g]	[g]	$[g cm^{-3}]$	
1	1.01	0.22	1.28	-0.4%
2	0.93	0.18	1.24	2.6%
3	0.98	0.21	1.27	0.0%
4	0.98	0.20	1.25	1.3%
5	0.91	0.17	1.23	3.4%

Sample number	<i>M_{air}</i>	M_w	Density	Porosity
	[g]	[g]	$[g cm^{-3}]$	
1	1.15	0.28	1,32	-0.1%
2	1.09	0.28	1,34	-1.9%
3	1.00	0.25	1,33	-0.9%
4	1.06	0.26	1,32	-0.3%
5	1.07	0.26	1,32	0.0%
6	1.01	0.24	1,31	0.7%
7	1.06	0.26	1,32	-0.3%

- ► ASTM D792 13
- ▶ ρ_{PEI} 1.27 g cm⁻³
- ▶ $\rho_{CNT} 2 \, \mathrm{g} \, \mathrm{cm}^{-3}$
- *ρ_{nanocomposite}* 1.32 g cm⁻³
 (law of mixture)