

AERONAUTICAL STRUCTURES BY AUTOMATIC LAY-UP WITH THERMOPLASTIC COMPOSITES AND MATERIAL BEHAVIOR

6th International Composites Conferences. Arcachon. 4-6 June 2018

Fernando Rodríguez-Lence. Mª Isabel Martín Hernando. FIDAMC

0. CONTENT

- 1. INTRODUCTION.
 - 1. WHY THERMOPLASTICS IS A KEY TECHNOLOGY.
 - 2. THERMOPLASTIC ROADMAP IN FIDAMC: FROM ONE-TOW TO MULTI-TOW HEAD.
- 2. FULL SCALE DEMONSTRATORS: WING PANEL AND FUSELAGE SHELLS.
- 3. MECHANISMS AND MODELS.
- 4. PEEK/PEKK MATERIAL COMPARISON. RAW MATERIAL SUPPLIERS.
- 5. CONCLUSIONS AND PERSPECTIVES.

MAIRBUS ****

1.1 WHY THERMOPLASTIC IS A KEY TECHNOLOGY?

MAIN DRAWBACKS

HIGH MANUFACTURING TEMPERATURE

HIGHER MATERIAL COST THAN THERMOSET

LOW VOLUMEN OF MATERIAL USED IN AERONAUTICAL INDUSTRY

SUPPLIER INTERACTION WITH MANUFACTURER NEEDS

1.2 THERMOPLASTIC ROADMAP IN FIDAMC: FROM UNITOW TO MULTITOW HEAD

MAIRBUS

AFP/ATL PROCCESSING EQUIPMENT

HEAD IS MOUNTED ON GANTRY STYLE TAPE LAYUP MACHINE WHICH MOVES LONGITUDINALLY ON FIXED RAILS WITH:

- LASER HEAT SOURCE
- CONSOLIDATION/COMPACTION ROLLER IN HOT LINE
- TAPE CUTTER
- TENSION CONTROL
- CONTROL SOFTWARE

1.2 THERMOPLASTIC ROADMAP IN FIDAMC: FROM UNITOW TO MULTITOW HEAD

1ST Prototype

LASER DEVICE (FIXED OPTIC)

BUREAU VERITAS

LASER DEVICE (SCANNER)

EXISTING HEAD INSTALLED IN FIDAMC MACHINE ONE-TOW (1/4" OR 1/2")

MULTI-TOW HEAD CONCEPT DEVELOPED WITH MTORRES

1.2 THERMOPLASTIC ROADMAP IN FIDAMC: FROM UNITOW TO MULTITOW HEAD

NEW CONCEPT OF HEAD: MULTI-TOW (8)

PROTOTYPE HEAD WITH NEW OPTIC LASER

EIGHT TOWS HEAD

1.3 THERMOPLASTIC ROADMAP IN FIDAMC: EVOLUTION OF THERMOPLASTIC MACHINE AND STRUCTURES

THERMOPLASTIC HEAD EVOLUTION

2. FULL SCALE DEMONSTRATORS: WING PANEL AND FUSELAGE SHELLS.

THERMOPLASTIC ROADMAP IN FIDAMC: FULL INTEGRATEDSTRUCTURES-TECHNOLOGICAL DEMONSTRATORS

🌀 AIRBUS 🚾 🚽 🕻

FEASIBILITY DEMONSTRATOR PANEL: PANEL WITH CO-CONSOLIDATED "T" SHAPED STRINGERS

3.1 INTERACTION

🌀 AIRBUS 👐 🚽 🕻

- \succ Heating diode laser → polymer melting
- ▶ Short time \rightarrow \uparrow temp. \rightarrow thermal degradation
- ➤ Adhesion → roughness/pressure/temperature/chain movements
- \succ Cooling → crystallization

3. MECHANISMS AND MODELS

3.2 HEATING

3.2 HEATING

Heat transferences: Material-material Material-roller

Heat source – power density

Material-tooling Material-air

Variable thermal properties in the material (conductivity, heat capacity...)

The performances of the laminate / part are not only related to the surface heating but with the whole state of the set.

🌀 AIRBUS 🚥 🚽

Layers are subsequently heated by conduction from the upper one.

Controlling variable: temperature at the surface of the substrate/NIP point Internal measurements by using thermocouples / simulation with the information from the upper layer

SIMULATIONS DEVOTED TO KNOW THE INTERNAL STATE ON THE SET, GIVING INFORMATION ABOUT RE-HEATING IN THE DOWNER LAYERS AFFECTING

3. MECHANISMS AND MODELS

3.2 HEATING

Angle (20)

Angle (20)

3.3 CRYSTALLIZATION AND DEGRADATION INTERACTION

In this manufacturing process - cooling speed is so high. It means that an ~ amorphous structure is obtained. Normally, it is accepted that it is OK when a specific % is reached (defined as a huge range) In the ISC process, many

AIRBUS ***

- MULTIPLE RE-HEATING STEPS OVER Tg (HIGH SPEED HEATING)
- MAINTENANCE ON A TOOLING WHICH IS NORMALLY OVER Tg

Angle (20)

- APC2/AS4 RAW (90° fiber orientation)

APC2/AS4 RAW @200°C (90° fiber orientation

3. MECHANISMS AND MODELS

3.3 CRYSTALLIZATION AND DEGRADATION INTERACTION

3.3 CRYSTALLIZATION AND DEGRADATION INTERACTION

THERMAL DEGRADATION IN THE MATERIAL CAN BE PRODUCED BY OVERHEATING

FTIR-ATR (PEEK 450G DEGRADATED)

AIRBUS ***

FIXED LAMINATION PARAMETERS PERMIT TO OBTAIN GOOD QUALITY LAMINATES WITH NO DEGRADATION EFFECTS

4. PEEK/PEKK MATERIAL COMPARISON. RAW MATERIAL SUPPLIERS

MAIRBUS

4. PEEK/PEKK MATERIAL COMPARISON. RAW MATERIAL SUPPLIERS

LOOKING FOR ISC GRADE MATERIAL

MAIRBUS

4. PEEK/PEKK MATERIAL COMPARISON. RAW MATERIAL SUPPLIERS

MAIRBUS

5. CONCLUSIONS AND PERSPECTIVES

- ✓ THERMOPLASTIC COMPOSITE IS A REAL OPPORTUNITY FOR A FASTER PROCESSING, LOWER LIFECYCLE COSTS AND ENVIRONMENTAL SUSTAINABILITY.
- ✓ JUST NOW, PEEK IS THE MATERIAL WITH THE DEEPER USE IN LASER ASSISTED AFP MACHINES, HIGHER MATURITY HAS BEEN REACHED WITH IT. DATA BASE → MANUFACTURING/MODELS
- ✓ PEKK AND PAEK HAVE PARTICULAR INTEREST AND BOTH ARE A COMPETITIVE OPTION IN AUTOMATED PROCESS.
- ✓ **SIMULATION** AND MODELS PERMIT TO UNDERSTAND THE AUTOMATIC LAY-UP PROCESS.
- ✓ **MATERIAL IMPROVEMENTS** WILL CONTRIBUTE TO THE SPEED INCREASE NEEDED TO REACH VALUES OF PRODUCTIVITY CLOSER TO THERMOSETS.

PERSPECTIVES:

- ✓ COOLING NEEDS TO BE CONTROLLED IN ORDER TO ALLOW CRYSTALLIZATION VARIATIONS.
- ✓ ROLLER MATERIAL NEEDS DEEPER RESEARCH WORKS.

THANK YOU FROM THERMOPLASTIC TEAM

Diego Saenz

Eduardo Lorenzo

Juan Pablo Zarco

MAIRBUS

Mª Isabel Martín

María Rodríguez

Rafael Contento

Jose Cuenca

Salvador Romero

Katia Fernandez

Silvia Calvo

21

Javier Arenas

Mar Zuazo

Fernando Rodríguez

Rubén Martínez

