FORTAPE PROJECT: FROM LAB-SCALE IMPREGNATION LINE TO PRE-INDUSTRIAL MANUFACTURING OF GF AND CF-BASED UD TAPES FOR TRANSPORTATION INDUSTRIES

MARGOT CHAUVET - CANOE THIBAUT SAVART – ARKEMA

AA-6THIC3-21

CANOE

A R&D CENTER

COMPOUNDS

IN POLYMER FORMULATION

INNOVATIVE PRODUCTS

IN MANUFACTURING PROCESS

FOR THE DEVELOPMENT OF

EXPERT IN CHEMISTRY & MATERIALS

MANUFACTURING

ADDITIVE

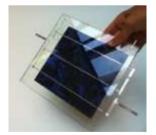
THERMOPLASTIC PREPREG

CARBON FIBER

ACRYLIC RESIN INFUSION

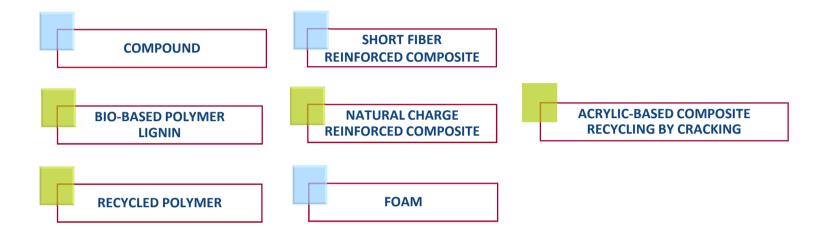
DEPARTMENTS

ADDITIVE MANUFACTURING AND ROBOTIZED PROCESS


CALIBRATED 3D FILAMENT MADE FROM PEKK AND GRAPHENE FOR FDM (DIAMETER 1.75 MM)

SELF LUBRICATING BEARING OBTAINED BY FDM TECHNOLOGY STARTING FROM GRAPHENE-CHARGED PEKK FILAMENT

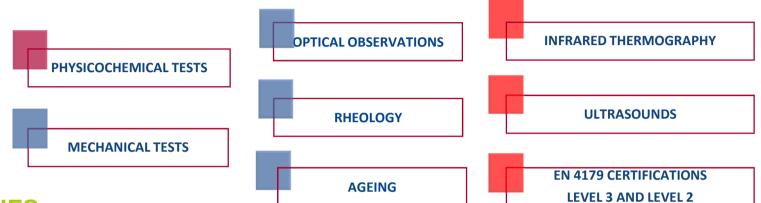
COMPOSITE PART OBTAINED BY AUTOMATIC DEPOSITION (AFP) OF 1/2" WIDE TP PREPREG TAPE (PEEK/CF)



PV MODULE OBTAINED BY ENCAPSULATING A PHOTOCURABLE ACRYLIC-BASED RESIN USING A 6-AXI\$ ROBOT

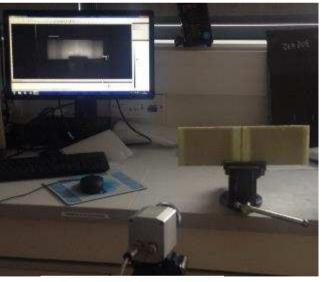
THERMOPLASTIC AND ELASTOMER FORMULATION

MAJOR AXIS OF DEVELOPMENT



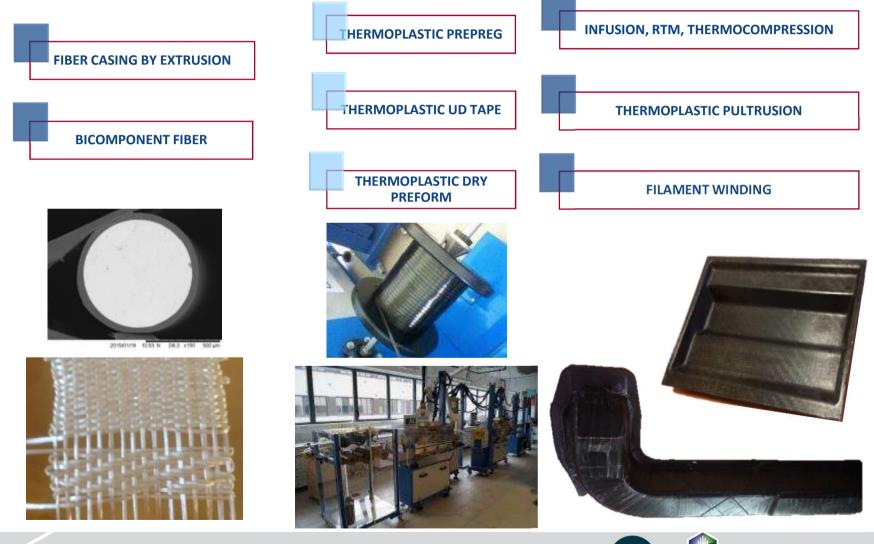
WORKSHOP FOR PLASTICS

MATERIALS TESTING AND NDT


TRANSVERSE AXIS

FACILITIES

INFRARED THERMOGRAPHY (UT2 COSAC)


MECHANICAL CHARACTERIZATION FROM 5N TO 250 KN AA-6thIC3-21 – T. Savart / M. Chauvet

ULTRASONIC C-SCAN TANK

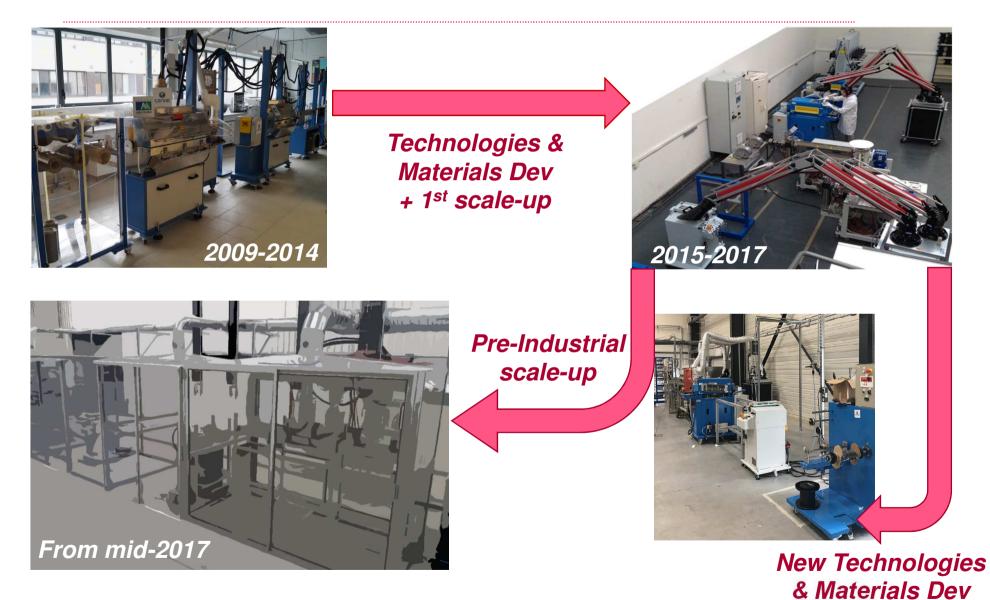
COMPOSITE AND THERMOPLASTIC PREPREG

MAJOR AXIS OF DEVELOPMENT

THERMOPLASTIC PREPREG

PILOT AND PRE-INDUSTRIAL LINES FOR MANUFACTURING OF THERMOPLASTIC PREPREG TAPES

PRE-INDUSTRIAL LINE CHARACTERISTICS :


- **3** IMPREGNATION TECHNOLOGIES VALIDATED ONTO PILOT LINE
- MANUFACTURING SPEED : UP TO 40 M/MIN
- SIMULTANEOUS IMPREGNATION OF (UP TO) 32 CALIBRATED TAPES → SEVERAL T/YEAR
- TAPE WIDTH : ¼", ½", 15MM, 23MM, 1", 50MM ... 400MM
- DRY PREFORM AND READY-TO-USE TAPE

MATERIALS

- POLYMERS : CONVENTIONAL AND SPECIFIC POLYMERS, EVEN HT°
- FUNCTIONAL ADDITIVES : PROCESSING AID, PIGMENT, FLAME RETARDANT, NANOCARBON CHARGE
- **REINFORCED FIBERS : CARBON, GLASS, FLAX, HEMP, BASALT, POLYMER...**

IMPREGNATION TECHNOLOGIES AT CANOE

ARKEMA

INT JULES VERNE

IMPREGNATION TECHNOLOGIES AT CANOE

Installed in August 2017 at CANOE Facilities in Lacq (64, FR)

- 1000m² building
- Formulation/Dev/Fabrication/Characterization
- More Visibility

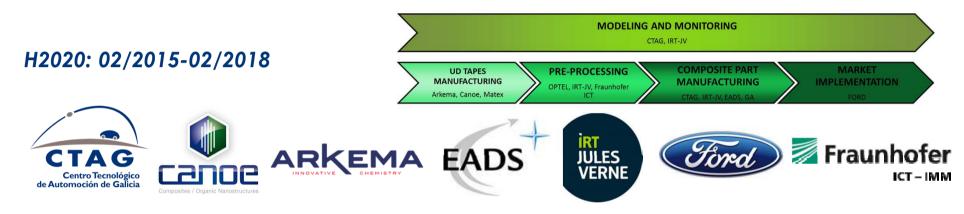
More Industrial and Chemical Environment

- Production/Delivery Facilities
- Possibility to visit it more as a "Firm" than a "Lab"
- 1^{st} trials \rightarrow Scale-up (2 lines in parallel)

IMPREGNATION TECHNOLOGIES AT CANOE

IN-LINE CONTROL

- TEMPERATURE
- IMPREGNATION QUALITY
- DIMENSIONS (WIDTH, THICKNESS)
- 🔅 BETTER QUALITY
- **BETTER PRODUCTIVITY**
- * INDUSTRIAL-LIKE PROCESS CONTROL



FORTAPE PROJECT

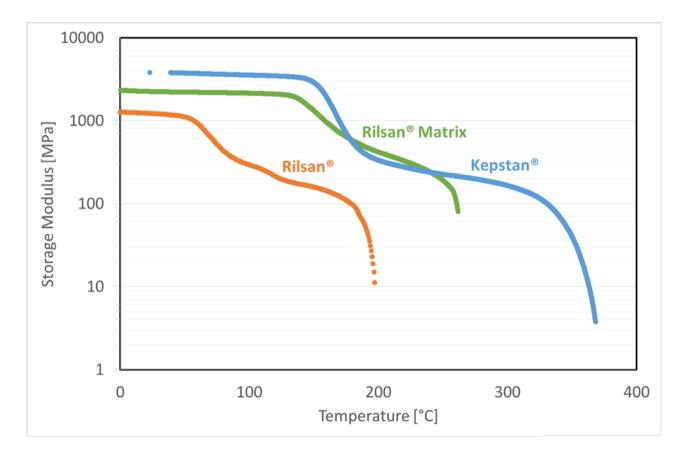
FORTAPE : Efficient and optimized integrated system for the manufacturing of complex parts based on unidirectional fibre tapes with the minimum use of material and energy for automotive and aeronautical industries.

New polymer formulations New impregnation and heating technologies Improved quality with reduced energy

11

FROM POLYMERS AND FIBERS...

.....TO FINAL COMPOSITE DEMONSTRATOR



ARKEMA IN THERMOPLASTIC COMPOSITES

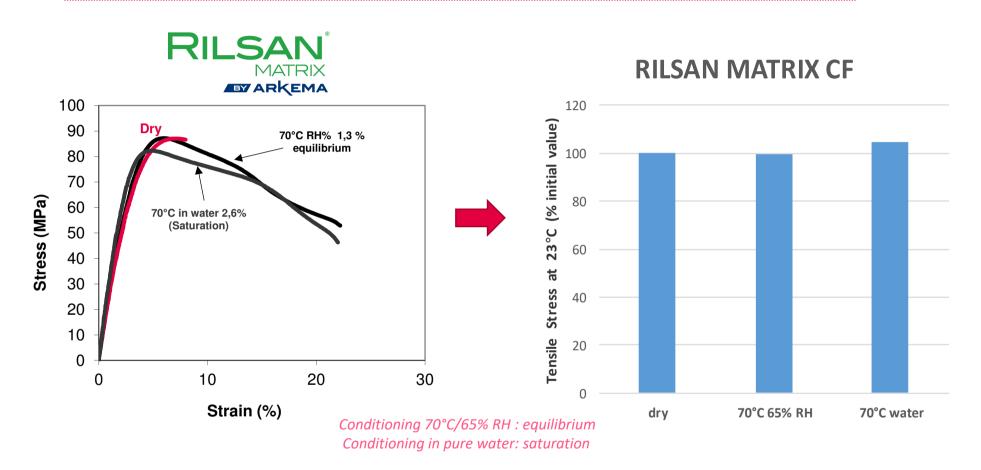
Offering a broad range of TP matrices suitable for most markets Aeronautics Offshore PEKK **PVDF** Automotive PAHT Wind energy **PA11** Sport & Leisure Marine Acrylic PA6 PP POLYSTRAND ELIUM KEPSTAN ARKEMA Courtesy Coriolis Composites Sofia Project- MVC Plasticos ARKEMA JULES VERNE AA-6thIC3-21 – T. Savart / M. Chauvet

COMPARISON WITH OTHER ARKEMA PRODUCTS

- Resin initially designed for the automotive market.
- But high Tg and high crystallinity (fire resistance) might allow to meet aerospace technical requirements.

KEY PROPERTIES : 2 GRADES (AND MORE UP TO COME)

Grades	Tf	Tg (DSC)	Τα (DMA)	Тс	ΔН	T _{onset} (ATG)	RT Modulus	200°C Modulus	Water uptake
Units	Ľ	Ľ	Ľ	C	J/g	Ľ	MPa	MPa	%
RILSAN [®] MATRIX EV ARKEMA	275	140	158	240	60	450	2200	420	2.6
Higher Tg	285	160	178	250	57	450	2500	620	2.6



KEY PROPERTIES : 2 GRADES VERY DIFFERENT FROM OTHER PPA

PPA	Tf	Tg (DSC)	Moisture uptake % (saturation in water)		Strain at yield	Modulus
Units	q	Ľ	%	MPa	%	МРа
RILSAN [®] MATRIX EV ARKEMA	275	140	2.6	87	7	2200
PA6	220	50	8.5	22	55	2000
PA66	265	60	9.5	65	3	3000
6/6T	295	105	>6			
66/6T	315-325	90-100	6.5			
6I/6T	325	130	5			

MOISTURE EFFECT ON RILSAN MATRIX[™] (NEAT RESIN) AND RILSAN MATRIX CF COMPOSITE

Stability of the resin explains the stability of RILSAN MATRIX CF composite

FORTAPE RESULTS

LOW POROSITY level in the tape and final composite part

Development of NOVEL HEATING TECHNICS

- **REDUCTION** of energy consumption
- IMPROVEMENT of the efficiency of heating technics thanks to the formulation of polymers

NO (organic) solvent = GOOD working conditions (industrial)

- GOOD IMPACT OF CALIBRATION SYSTEM on tape morphology


FORTAPE PROTOTYPES FOR AERONAUTICS

Flat sheets for mechanical properties

- AFP processing at FIDAMC (Getafe, SPAIN)
- With in-situ consolidation
- With and without autoclave post-consolidation

Airplane Window Frame

- AFP processing
- With in-situ consolidation
- Thermostamping
 - (Pre)Heating
 - Heating of the mold
 - Stamping
 - Part release

FORTAPE PROTOTYPES FOR AUTOMOTIVE

Simulation of local reinforcement of

composite part for automotive

- FORD, CTAG
- Door structure reinforced with UD tapes
- \rightarrow 4 to 5 zones to be reinforced

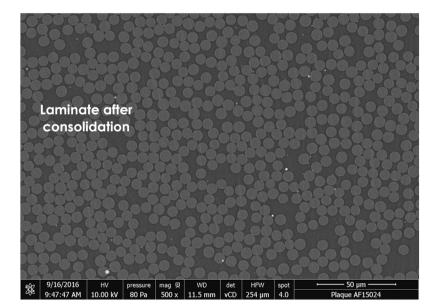
Development of part processing

- CTAG \rightarrow small press
- Fraunhofer + IRT JV → tape placement + bigger press

\Rightarrow Door structure (Grupo Antolin \rightarrow FORD)

- Done at IRT Jules Verne
- Local AFP placement of GF/PP patch
- Mold placed into a vertical press
- Overmolding using reinforced PP
 - Talc
 - Long Glass Fibers

RILSAN® MATRIX CF TAPES: <u>PRELIMINARY DATAS</u>CF TORAY T 700S



RILSAN MATRIX CF

100% UD

50% fiber volume ratio thickness 130~250 μ m width ~ 1/4" & 1/2"& 1"

LAMINATE PROPERTIES	Fiber angle	RILSAN MATRIX	
Fibre content vol%		50	
Tensile modulus 0° (GPa)	0°	120	
Tensile stress 0° (MPa)	0°	2075	
Max elongation 0° (%)	0°	1.7	
Shear modulus +/-45° (GPa)	+/-45°	2883	
In plan shear stress +/-45° (MPa)	+/-45°	78	
Max shear strain +/-45°(%)	+/-45°	31	
Transverse modulus 90° (GPa)	90°	6,9	
Transverse stress 90° (MPa)	90°	39	
Max elongation 90° (%)	90°	0,6	
Flexural modulus (GPa)	0°	102	
Max flexural strength (MPa)	0°	1542	
Elongation (%)	0°	1.6	
Flexural modulus (GPa)	90°	6,6	
Flexural strength (MPa)	90°	83	
Max elongation (%)	90°	1,4	

QSP MOLDING FROM CORIOLIS PREFORM

- HT PA Rilson Matrix synthesis for tapes manufacturing and injection molding at ARKEMA
- Tape manufacturing at 1/2" at CANOE facilities
- + AFP processing at Coriolis facilities
- QSP processing at CETIM facilities (heating, thermostamping, overmolding)

ANY QUESTIONS ?

MARGOT CHAUVET - CANOE THIBAUT SAVART – ARKEMA

AA-6THIC3-21

