

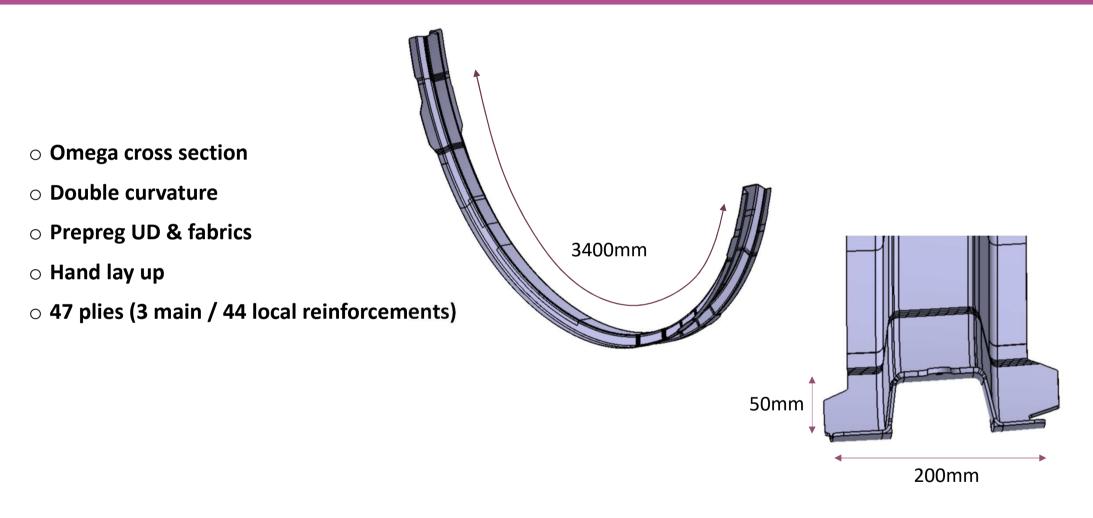
IC3 - Arcachon

Automated Collaborative Process for Aerospace Omega Stiffeners Manufacturing

G.FOURAGE

June 5th, 2018

- European funded project CleanSky 2 (part of Horizon2020 research programme)
- Airframe ITD Work Package B-3.6 : « New Materials and Manufacturing Technologies »
- Project name : COBOMEGA
- Topic Manager : Airbus DS, Cádiz, Spain
- Project leader : Compositadour
- o 12 months, ended December 31st, 2017
- o **120k€**



AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

- "To set up <u>technical specification</u> for the implementation of advanced equipment <u>to automate or assist</u> the <u>manufacturing process</u> of hand lay-up of Carbon Fiber Composite <u>stiffeners with omega section</u>, and to realize the trials."
 - "Set up a concept for highly efficient industrial equipment able to manufacture Omega stiffeners with different curvatures"
 - "Evaluate various solutions considering ergonomic, cost and flexibility aspects"
 - "Design and test automated and/or assisted process for the layup operation"

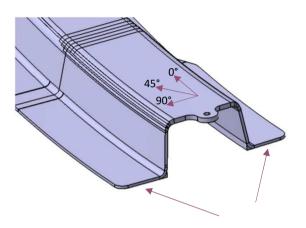
Stiffener specifications

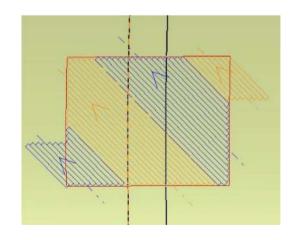
AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

Stiffener specifications

$\,\circ\,$ Main challenges for automation :

- High number of small plies
- High variations in plies dimensions
- Mix of UD/Fabrics
- Curvature
- Several stiffeners geometries


Two solutions investigated for lay up : Automation with AFP Assisted process with collaborative robot

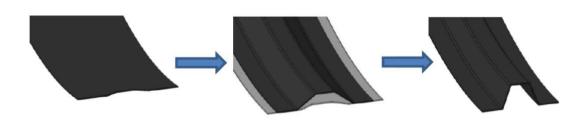


AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

Automation with AFP

- \odot AFP constraints
 - Limited lay up geometry => U-shape or flat cross section only
 - UD material only => high increase of plies quantity !
 - Minimal fiber length => overlength required for 45°/135° is problematic for plies inside EOP contour

AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

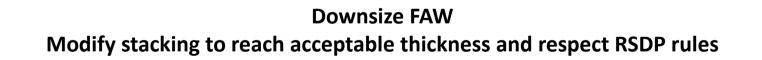

Automation with AFP

○ Lay up strategies : AFP + Hot forming

OPTION 1: U-Shape cross section preform

- Compression applied to 0° fibers on flanges during forming => high risk of wrinkles
- Reduced lay up speed due to corner pass
- $\circ~$ Still need a forming step for flanges

OPTION 2 : Curved preform with flat cross section

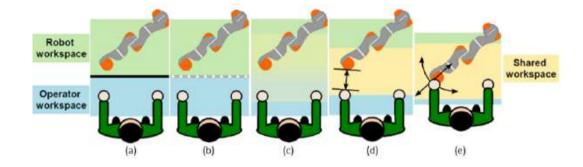

- Tension applied to 0° fibers during flange and web forming
- Fast lay up speed

Avoid 0° fibers on flanges Flat preform enhance lay up speed without influence on forming time OPTION N°2 selected due to process time/manufacturing

AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

- Direct conversion of stacking from fabrics to UD leads to increase of plies number / preform thickness, with impact on lay up time and local stiffness
- $\,\circ\,$ Downsize FAW leads to use of non qualified materials

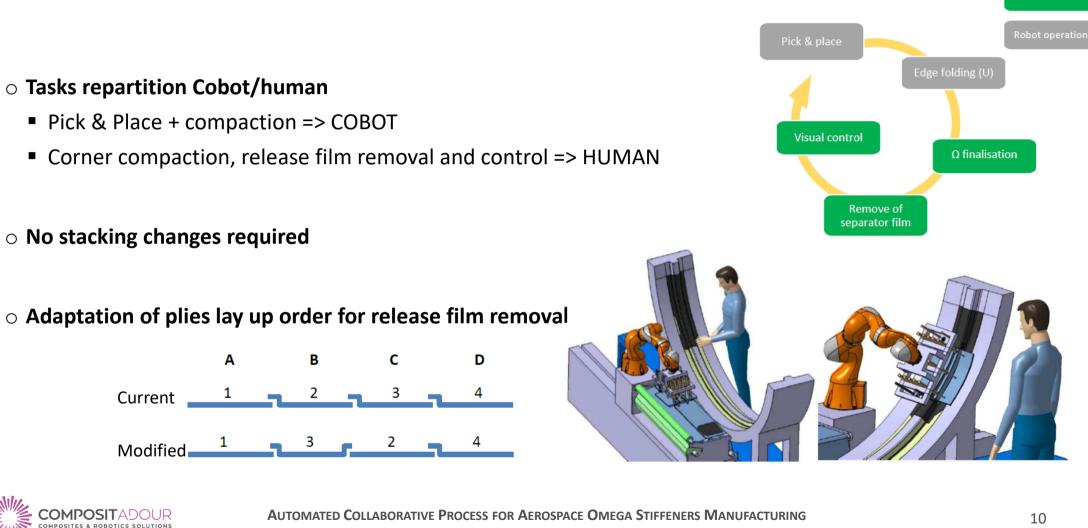
				Orientation (°)	CPT (mm)
			RH1-P001A,B,C,D	45	0,184
	Orientation (*)	CPT (mm)	RH1-P001A,B,C,D	-45	0,184
RH1-PO01A,B,C,D	+/-45	0,28	RH1-P010A, B, C, D	0	0,184
	0/90		RH1-P010A,B,C,D	90	0,184
RH1-P010A,B,C,D		0,28	RH1-P010A,B,C,D	90	0,184
RH1-PO47A,B,C,D	+/-45	0,28	RH1-P010A,B,C,D	0	0,184
TOTAL		0,840	RH1-P047A,B,C,D	-45	0,184
			RH1-P047A, B, C, D	45	0,184
			TOTAL		1,472



AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

Collaborative process

- Cobot and human in shared workspace with possible contact
- $\circ\,$ End effector must comply with various plies sizes & stiffener geometries
- Release film removal after lay up is difficult to robotized
- Automation of compaction at web-flange transition remains complex due to stiffener curvature



Task repartition is a key factor for process efficiency Specific end effector development needed

AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

Collaborative process

Human operation

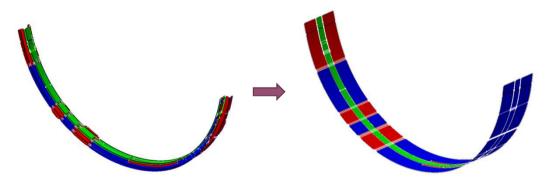
Comparison between AFP and Cobot

Equivalent process time AFP + hot forming / Pick & Place

○ AFP

- Faster material preparation
- High efficiency on full plies, UD and large size reinforcements
- Low efficiency on small reinforcements
- High manufacturing readiness level
- Need hot forming step
- Need stacking modifications

$\circ\,$ Pick & Place

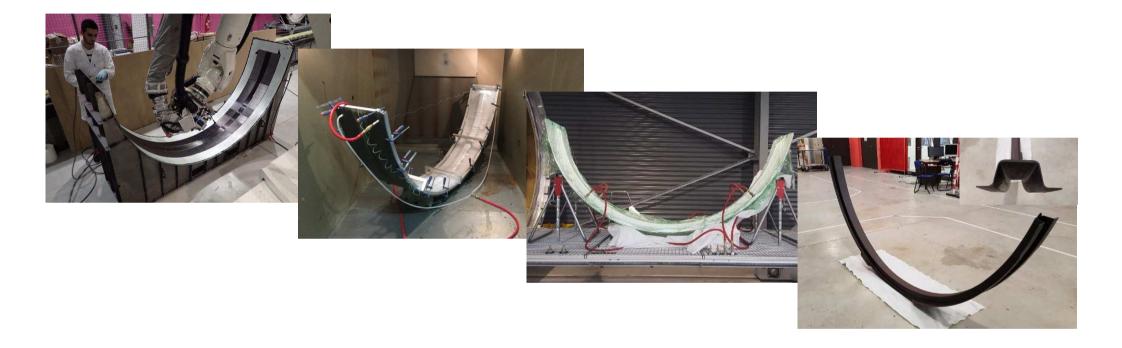

- Time consuming Cutting/Kitting
- Low efficiency on full plies, UD and large size reinforcements
- High efficiency on small reinforcements
- Low manufacturing readiness level (end effector)
- No additional forming required
- Identical part design

Combined process

Solution => Combined process AFP/Pick & Place + Hot forming

- Modified stacking to avoid 0° on flanges
- Same materials as original part
- Full plies, UD and large plies = AFP
- Small plies = Pick & Place
- \circ Flat preform cross section simplify end effector design

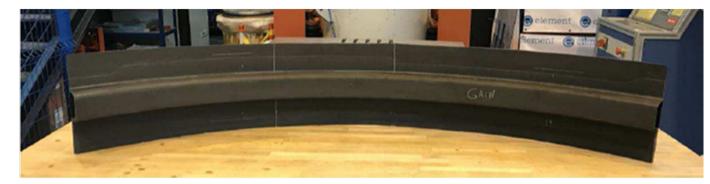
AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

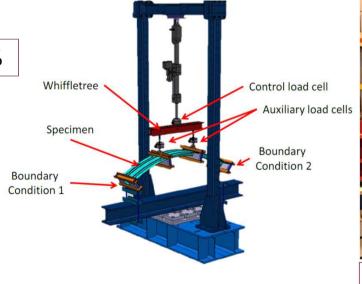

Combined process

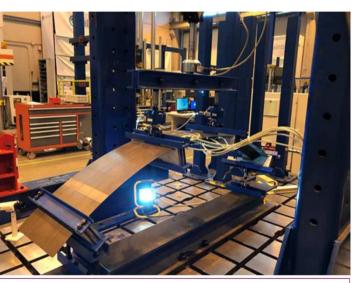
- Efficient plies repartition AFP/Cobot => balanced process time for each industrial equipment
- AFP • Simultaneous hot forming P & P STIFFENER #1 **STIFFENER #1** Plies n° 39 Plies n° 1 to Plies n° 11 to 38 10 to 47 STIFFENER #2 **STIFFENER #2** Plies n° 39 Plies n° 1 to Plies n° 11 to 38 10 to 47 LAY UP HOT FORMING ATTERIAL PREPARATIO 6 preforms lay up simultaneously 1 AFP Cell + 1 Pick & Place Cell Achieved production rate goal

AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

Prototypes manufacturing


Caul plate and curing tool made in house Four stiffeners prototypes manufactured


AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING


Prototypes testing

Bending strength improved by 15%

Test done under GAIN project scope

AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

Conclusion

- Combined AFP/Pick & Place process offers flexibility, lay up accuracy and high production rate
- Flat preform section simplify end effector design and compliance with several stiffener curvature
- Slight adaptations still required to improve manufacturing (stacking)

AUTOMATED COLLABORATIVE PROCESS FOR AEROSPACE OMEGA STIFFENERS MANUFACTURING

IC3 - Arcachon

Automated Collaborative Process for Aerospace Omega Stiffeners Manufacturing

G.FOURAGE

June 5th, 2018

