

Innovative Composites Manufacturing Solutions

Since 1990

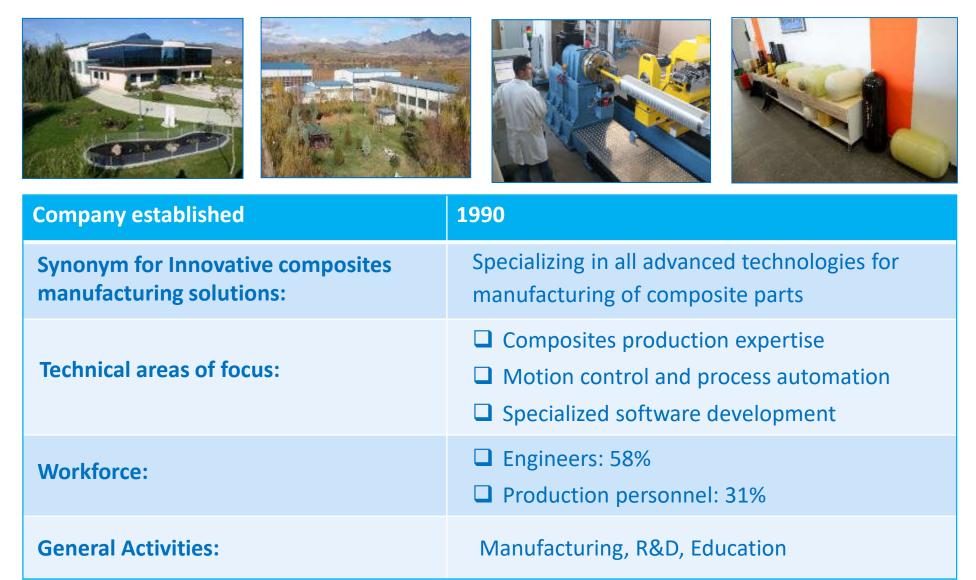
Manufacturing Solutions and Properties of Thermoplastic Composites

Dragan Veljanoski, M.Sc. Product Engineer International Carbon Composite Conference Arcachon, France

4-Jun-18

Company highlights

□ MIKROSAM's thermoplastic manufacturing solutions


Experimental part

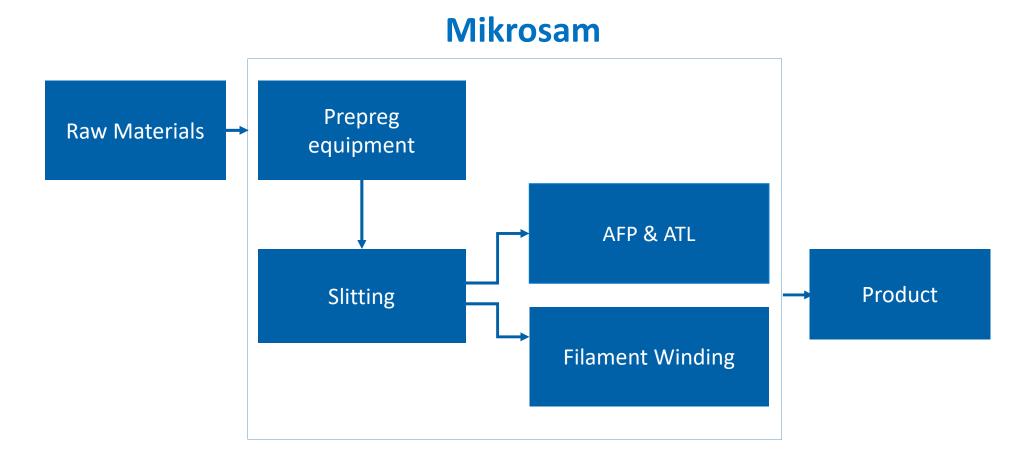
Conclusion and the future of thermoplastic composite

Company Highlights

R&D Support to Customers

Institute for Advanced Composites and Robotics

- R&D assistance
- Full design and development support
- □ Technology process testing, manufacturing samples or prototypes
- □ Services include:
 - new product or technology development
 - testing and supervising
 - equipment and process operation training
 - feasibility reports
 - project management and start-up assistance
 - know-how and technology transfer



MIKROSAM's Thermoplastic Manufacturing Solutions

Mikrosam in the Process of Manufacturing Thermoplastic Composites

Experimental part: Properties of Thermoplastic Composites

Why Thermoplastic Composites?

Benefits

- Durability
- **G** Fatigue
- Corrosion
- Toughness
- Unique properties
- Vibration dampening
- Light weight
- Potential for low cost
- Shelf life
- Recyclable

Limitations

- Cost
- Materials
- Manufacturing
- **Tooling**
- Design know-how
- Manufacturing know-how
- Use high temperature

On-Line Consolidation System

On-Line Consolidation System

Qualitative Comparison of Three Heat Sources

	Hot Gas Torch	Laser Beam	Infrared Light
Energy Efficiency		+	+/-
Response Time	-	++	+/-
Size	++	-	+/-
Weight	++	-	+
Price	+/-	-	+

Note: + Good; ++ Very good; - Bad; - - Very bad; +/- Average

Main Purpose

The influence of manufacturing parameters on flexural strength of thermoplastic tape (UD prepreg) samples

□ Samples manufactured with LATP technology with different

- speed
- pressure of contact roller (compaction force)
- temperature of laser

□ Flexural strength tested on universal testing machine

Materials for Experiment

LATP 1: UD tape CF/PPS, 0.19 mm thickness

fiber volume fraction of 60 ± 3% width 1"(25,4mm)

LATP 2: UD tape CF/PEEK, 0.19 mm thickness

fiber volume fraction of 60 ± 3% width 1"(25,4mm)

LATP 3: UD tape CF/PEKK, 0.14 mm thickness

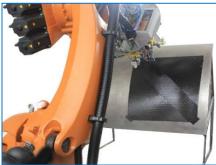
fiber volume fraction of 60 ± 3% width 1"(25,4mm)

Thermoplastic Unidirectional Prepreg (UD)

Variables in LATP

Processing variables controlled in the LATP process include:

- laser power
- □ laser angle
- □ roller pressure
- □ tool temperature
- □ lay-down speed and
- □ roller temperature


Processing parameters chosen based on a small number of trials performed by the UD tape (Carbon fiber/PPS)

Integrated Solution AFP/ATL Robotic Cell

Laminates Production - Theoretical Approach

- □ Which material UD prepreg will you use?
- □ What will be the velocity?
- □ What will be the process temperature?
- □ What will be the compaction force of contact rollers?
- e.t.c.

However, there is a better way to get the best combination of variables to make your product

Input Parameters for LATP Tests

UD thermoplastic prepreg

- LATP1 PPS/Carbon fiber 25mm
- LATP2 PEEK/Carbon fiber 25mm
- LATP3 PEKK/Carbon fiber 25mm

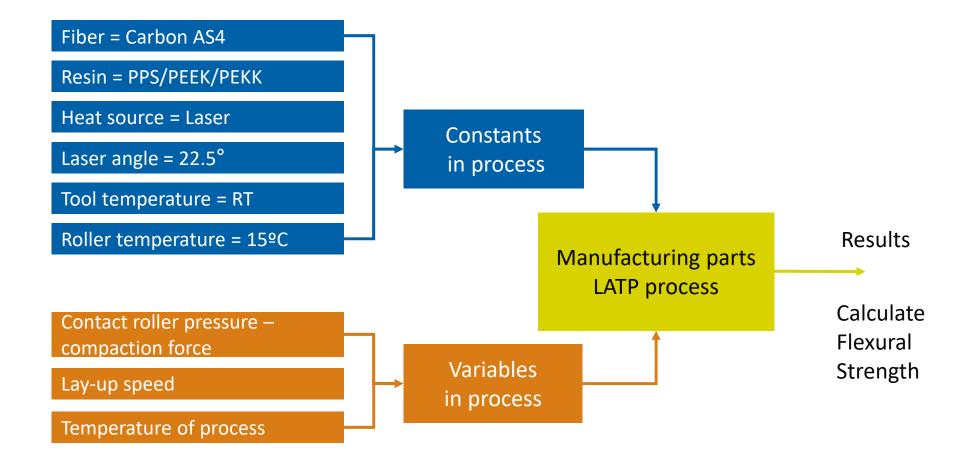
Process temperature = T1, T2, (variable)

□ Heat source = laser 3 kW power (constant)

Compaction force = F1, F2 (variable)

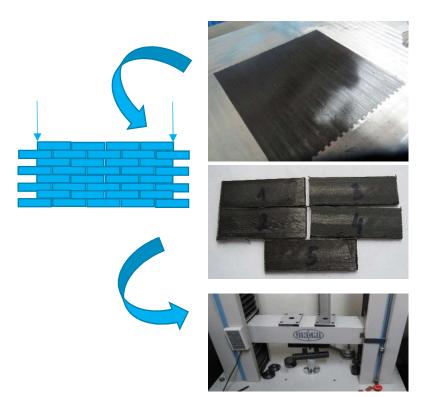
□ Tool temperature = RT 19-20°C (constant)

- □ Speed / velocity = V1, V2 (variable)
- \Box Laser angle = 22.5° (constant)


□ Roller temperature (constant ~ 15°C)

Laser optical (constant) and other parameters (constants)

Constants and Variables for LATP Process



Experiments with LATP Technology

Tape Placement experiments LATP1/LATP2/LATP3

- □ Velocity/lay up speed = V
- Temperature = T (laser power)
- Compaction force = F
- Placement velocity
 - V1 = 100mm/s and V2 = 150mm/s
- **Temperature**
 - LATP 1 T1 = 280 and T2 = 400°C
 - LATP 2 T1 = 420 and T2 = 450°C
 - LATP 3 T1 = 400 and T2 = 430°C

Contact roller force F1 = (270 N) 45 N*mm – F2 = (400 N) 65 N*mm

Experiments with LATP Technology

120 specimens tested, allowing 5 reproducibility tests on each sample from No.1 to No.8 for LATP1/LATP2 and LATP3

Table 1. Level of process parameters

A (x ₁) Laser temperature (°C) 280 (LATP1) 420 (LATP2) 400 (LATP3) 400 (LATP1) 450 (LATP2) 430 (LATP3) N° of exp. Table 2. Factorial design 2 ³ B (x ₂) Placement rate (mm/s) 100 150 1 400 430 150 C (x ₃) Roller compaction ~270 ~400 ~400 450 430 150							Level		Factor	Symbol
Laser temperature (°C) 280 (LATP1) 420 (LATP2) 400 (LATP3) 400 (LATP1) 450 (LATP2) 430 (LATP3) N° of exp. Factor B (x ₂) Placement rate (mm/s) 100 150 1 400 430 150 C (x ₃) Roller - - - - - - B (x ₂) Placement rate (mm/s) 100 150 1 400 450 430 150 C (x ₃) Roller -							+1	-1		
temperature (°C) 420 (LATP2) 400 (LATP3) 450 (LATP2) 430 (LATP3) 450 (LATP2) 430 (LATP3) M° of exp. Factor B (x ₂) Placement rate (mm/s) 100 150 1 400 450 430 150 C (x ₃) Roller -	3 gn 2 ³	esi	torial de	2. Fact	Table					A (x ₁)
B (x ₂) Placement rate (mm/s) 100 150 1 400 450 430 150 C (x ₃) Roller - <t< th=""><th></th><th></th><th>Factor</th><th></th><th></th><th>N° of exp.</th><th rowspan="2">450 (LATP2)</th><th>420 (LATP2)</th><th>temperature</th><th></th></t<>			Factor			N° of exp.	450 (LATP2)	420 (LATP2)	temperature	
B (x ₂) Placement rate (mm/s) 100 150 1 400 450 430 150 C (x ₃) Roller 3 400 450 430 150	В			Α				(°C) 400 (LATP3)		
rate (mm/s) 100 150 1 400 450 450 150 C (x ₃) Roller 3 400 450 430 150			LATP3	LATP2	LATP1				Discoment	
C (x ₃) Roller 3 400 450 430 150	150		430	450	400	1	150	100		B (X ₂)
5 400 430 430 130	150		400	420	280	2				
$compaction = \frac{1}{2}/10$	150		430	450	400	3	~100	~270		C (X ₃)
	150		400	420	280	4	~400	~270	compaction	
force (N) 5 400 450 430 100	100		430	450	400	5			force (N)	
6 280 420 400 100	100		400	420	280	6				
7 400 450 430 100	100		430	450	400	7				

С

Monitoring the process parameters Quality Control System (QCS)

Monitoring the process parameters Thermal camera

File View Image Calibration Help

- Mounted on the lay-up head
- Moves along with head and records temperature at the point of lay-up
- Temperature scale showing color spectrum and temperature value

🖉 4 o 🔧 🗙 🎢 🔳 🖂		Rec	onnect Camera: Virtual camera, Status: Online	offine mode	Scale
			elect Calibration: Movie thermal of Status: Inactive	fata loaded.	405
		0000	ttings 📝 Selections 🙀 Recording	Image processing	382
		Stop	A		350
		*			330
	-	1		X 11 17	- 317
			* *	, x ⁴¹ ⁵⁷	290
			· H		277
		Ð	port Select all	Enggens Dequence) Events	251
			Playback		237
	A DESCRIPTION OF THE OWNER OF THE		Rx Time	2018-01-18 10:08:46,216175	
			Tx Time	n/a	8 211
			Current frame	001265 (158s)	190
			Framecount	015282 (1910)	186
			Original framerate	8	171
			Playback framerate	8	155
			Export		145
			Start marker	1	
			End marker	15282	102
			Selection framecount	15282	110
			Capture frames	1	100
			Skip frames	0	92
		10.00.00	AVI Export options		79
000000000000			Add scale overlay	False	
			tile		
		9999	Name	D:\18.01.2018\59PL13_ply10.xvi	53
000000000000			Recorded using	Xeneth v2, 6, 0, 467 (Xeneth2.6) built on Jan 3/ 🛩	40
			B 6		
			Graph		
400					
300					1000
200					
100					
	10	20		40	50

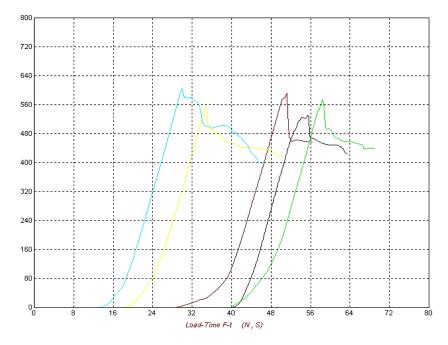
Samples Testing

ASTM D790 (ISO 14125) standard

- □ Micrometer used to measure dimensions and thicknesses of specimens
- Room temperature
- CNC testing machine, speed of 5 mm/min
- Force (load) and time recorded by an automatic data acquisition system for the samples

Samples Testing

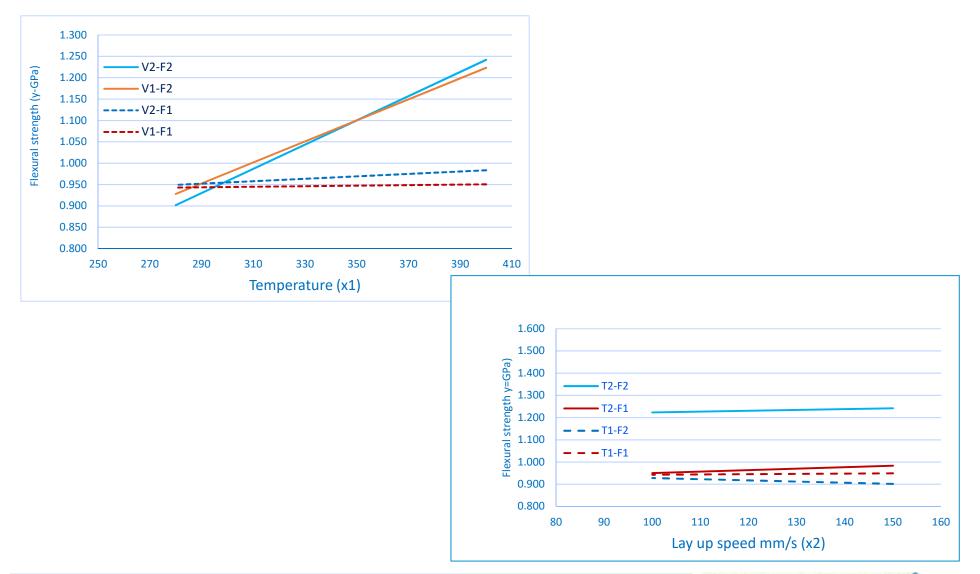
Samples No.6 (x5) for LATP 1



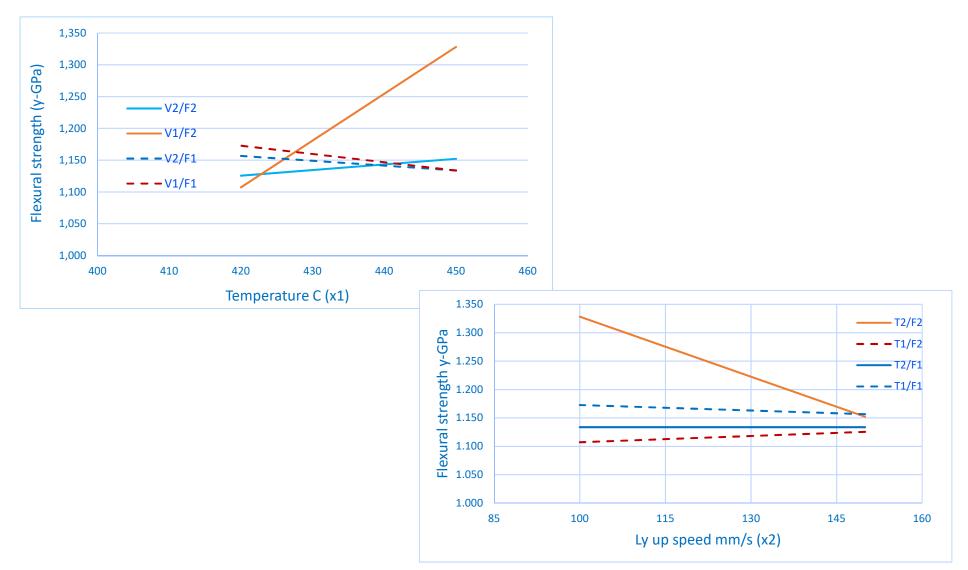
Universal Testing machine

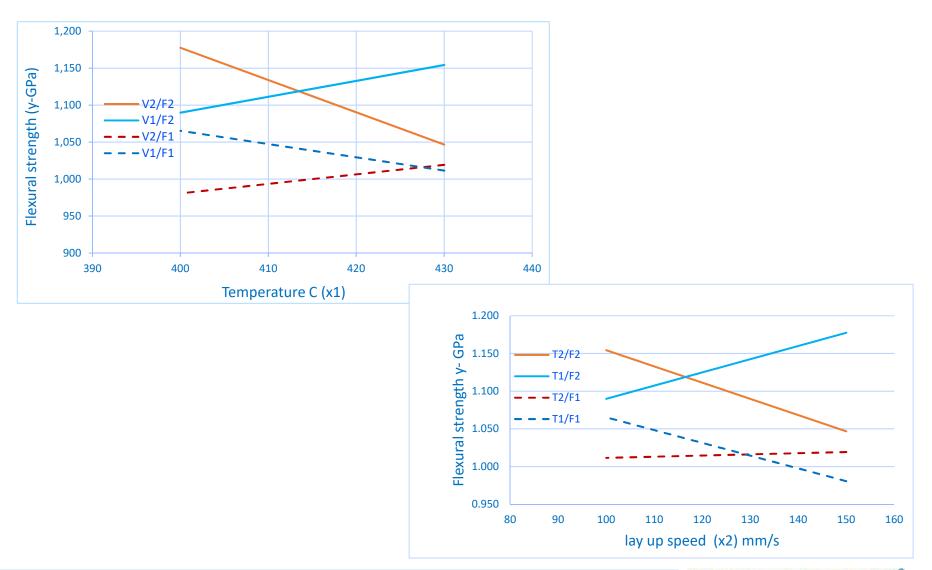
Specimens mounted on two cylindrical supports

Flexural strength measurement method



Force-time diagram of No.6 sample for LATP 1


Experimental Results LATP1


Experimental Results LATP2

Experimental Results LATP3

DOE Calculation of Flexural Strength σf (Y) with T (X₁), F (X₂) and V (X₃)

- X_1 Temperature (⁰C)
- X₂ Lay up speed (mm/s)
- X₃ Compact force of rollers (N)
- Y = 1015.085 + 84.663 x1 + 58.608 x3 + 74.22 x1x3.....(1) LATP1
- Y = 1003.858 + 73.436 x1 + 47.381 x3 + 62.993 x1x3...... (2) LATP2
- Y = 990.683 + 60.26 x1 + 34.205x3 + 49.818 x1x3 30.262 x1x2x3.....(3) LATP3

Cochran (G cal) and Fisher (F cal) criteria calculated from design 2³, fulfilling the rule G cal < G tab and F cal < F tab

Hypothesis acceptable with 5% mistake for all samples

Flat plate

□ Material: UD tape CF/PPS, 0.19 mm thickness

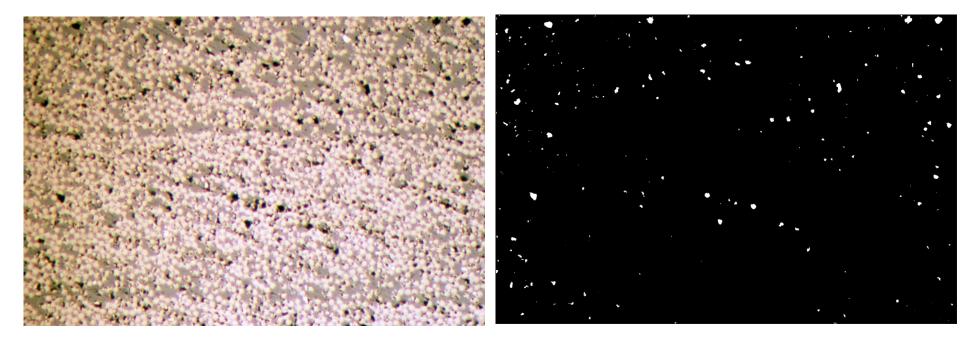
Design: [0°]8

Number of layers: 8

Pressure: 4 bar

Temperature: 400°C

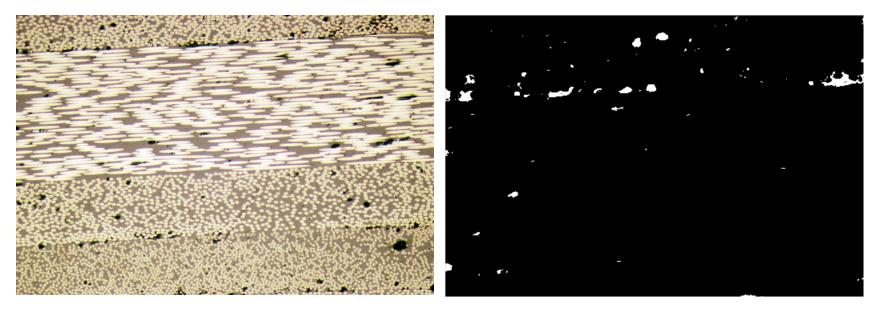
Lay-up speed: 150 m/min


Programmed gap: 1 mm

□Laser angle: 22.5°

Expansion x 100 and calculation of the void percentage

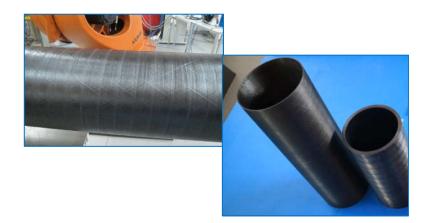
Void percentage: 0.79 %


Flat plate

□ Material: UD tape CF/PEKK, 0.14 mm thickness Design: 45°/0°/-45°/90°/45°/0°/-45°/90°/45°/0°/-45°/90°/45°/0°/ -45°/90°/90°/-45°/0°/45°/90°/-45°/0°/45°/90°/-45°/0°/45°/90°/ -45°/0°/45° Number of layers: 32 Pressure: 3 bar Temperature: 480°C Lay-up speed: 18 m/min □ Programmed gap: 1 mm Laser angle: 22.5° Laser optics: 250 mm

Expansion x 100 and calculation of the void percentage

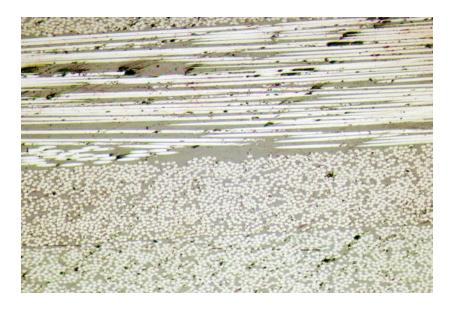
Void percentage: 1.21 %


Pipe 1

□ Material: UD tape CF/PPS, 0.19 mm thickness

Design: 88°/44.4°/-44.4°/92.9°/44.4°/-44.4°/87.1°/92.9°/44.4°

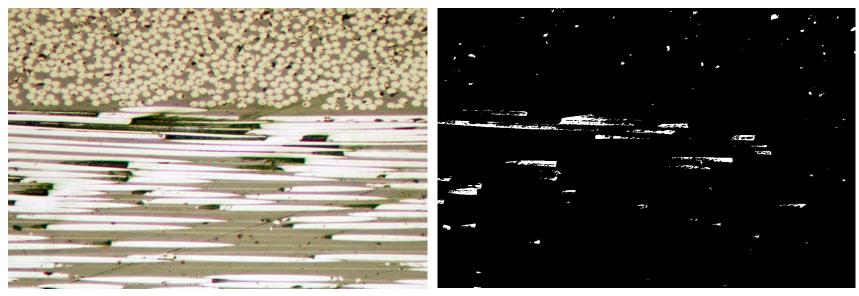
/-44.4°/87.1°/92.9°/44.4°/-44.4°/87.1°/44.4°/-44.4°/92.9°/87.1°


- Number of layers: 19
- Pressure: 3 bar
- □ Temperature: 450°C
- Lay-up speed: 18 m/min
- Programmed gap: 1 mm
- □ Laser angle: 22,5°
- Laser optics: 250 mm

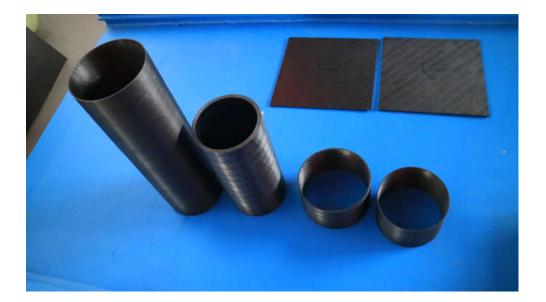
Expansion x 100 and calculation of the void percentage

Void percentage: 0.728 %

Pipe 2

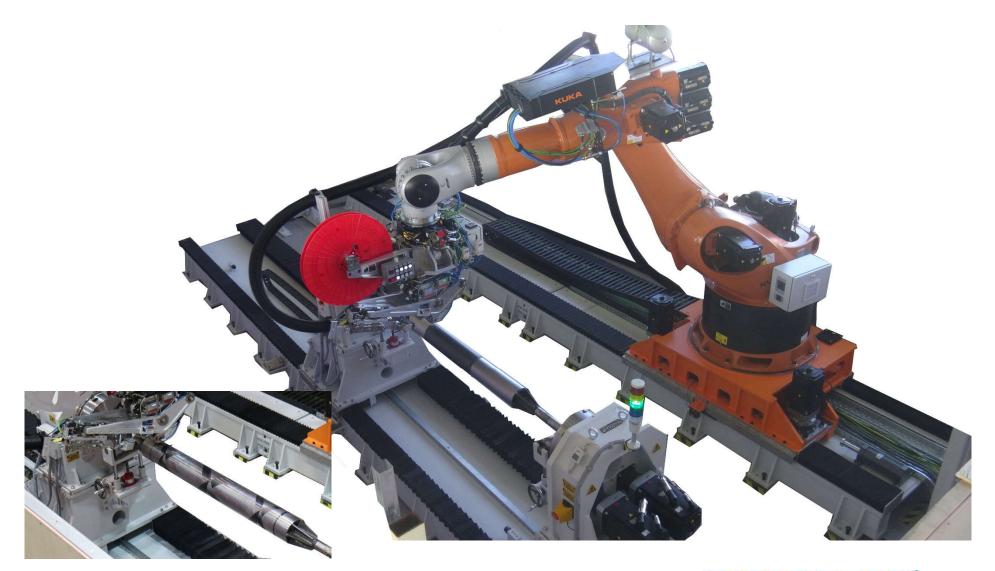

Material: UD tape CF/PEEK, 0.19 mm thickness
Design: 88°/44.4°/-44.4°/92.9°/44.4°/-44.4°/87.1°/92.9°/44.4°/
-44.4°/87.1°/92.9°/44.4°/-44.4°/87.1°/44.4°/-44.4°/92.9°/87.1°
Number of layers: 19
Pressure: 3.8 bar
Temperature: 320°C
Lay-up speed: 18 m/min
Programmed gap: 1 mm
Laser angle: 22,5°

Expansion x 200 and calculation of the void percentage


Void percentage: 1.753 %

Thermoplastic Products Manufactured with Mikrosam's LATP Technology

Thermoplastic Products Manufactured with Mikrosam's ATP Technology


Preparation of Flat Specimens

CON

Preparation of Tube Specimens

Conclusion and the Future of Thermoplastic Composite

Conclusion from Experiments

Best results in flexural strength for each experiment obtained from

- Higher values of T and F
- Temperatures above 400°C and pressure of ~ 400 N
- In bonding of layers at higher temperature for all thermoplastic matrixes (PPS/PEEK/PEKK)

Percentage of voids on optical microscope images for all products tested are below 2%

Best result obtained for pipe 1 from PPS thermoplastic material

The Future of Thermoplastic Composites

- Expected to undergo substantial growth over the next 10 years
- Low-cost production techniques are the current trend to lower overall part costs
- Focuse on producing parts utilizing processes without an autoclave
- Composites reinforced with thermoplastic polymers provide a variety of processes that make parts rapid and reliable
- □ Main advantage compared to thermosetting composite is the ability to re-melt
- □ Must be accompanied by the development of new innovative technologies
- With recent developments in automation, these thermoplastic composites will be useful in more applications

Thank you for your attention!

Innovative Composites Manufacturing Solutions

Mikrosam A.D.

Krusevski pat bb, 7500 Prilep, Macedonia Tel. No. +389(0)48 400 100

Web: <u>www.mikrosam.com</u> E-mail: <u>sales@mikrosam.com</u>

