

Institut de la Matière Condensée et des Nanosciences (IMCN) Bio- and Soft MAtter (BSMA)

Using *zinc* oxide nanoparticles to improve the *thermal* stability of a new

Université catholique de Louvain

École polytechnique de Louvain (EPL)

ICCC 2018 - Arcachon

e[

Property	Epoxy	Phenolics	Cyanate ester	PBZ
$T_{cure} [^{\circ}C]$	25-180	150-190	180-250	160-220
T_{max} use [°C]	180	200	150-200	130-280
Cure schrinkage	≥ 3	0.002	≈3	≈ 0
$T_g [^{\circ}C]$	150-220	170	250-270	170-340
Tensile strength [MPa]	90-120	24-45	70-130	100-125
Tensile modulus [GPa]	3.1-3.8	3.0-5.0	3.1-3.4	3.8-4.5
Elongation [%]	3.0-4.3	0.3	2.0-4.0	2.3-2.9
<i>T</i> _{onset} degradation [°C]	260-340	300-360	400-420	380-400

Property	Epoxy	Phenolics	Cyanate ester	PBZ
$T_{cure} [^{\circ}C]$	25-180	150-190	180-250	160-220
T_{max} use [°C]	180	200 150-200		130-280
Cure schrinkage	≥ 3	0.002	≈3	≈ 0
$T_g \ [^{\circ}C]$	150-220	170	250-270	170-340
Tensile strength [MPa]	90-120	24-45	70-130	100-125
Tensile modulus [GPa]	3.1-3.8	3.0-5.0	3.1-3.4	3.8-4.5
Elongation [%]	3.0-4.3	0.3	2.0-4.0	2.3-2.9
<i>T</i> _{onset} degradation [°C]	260-340	300-360	400-420	380-400

Property	Epoxy	Phenolics	Cyanate ester	PBZ
$T_{cure} [^{\circ}C]$	25-180	150-190	180-250	160-220
T_{max} use [°C]	180	200	150-200	130-280
Cure schrinkage	≥ 3	0.002	≈3	≈ 0
$T_g \ [^{\circ}C]$	150-220	170	250-270	170-340
Tensile strength [MPa]	[MPa] 90-120 24-45 70-130		100-125	
Tensile modulus [GPa]	3.1-3.8	3.0-5.0	3.1-3.4	3.8-4.5
Elongation [%]	3.0-4.3	0.3	2.0-4.0	2.3-2.9
<i>T</i> _{onset} degradation [°C]	260-340	300-360	400-420	380-400

Property	Epoxy	Phenolics	Cyanate ester	PBZ
$T_{cure} [^{\circ}C]$	25-180	150-190	180-250	160-220
T_{max} use [°C]	180	200	150-200	130-280
Cure schrinkage	≥ 3	0.002	≈3	≈ 0
$T_g \ [^{\circ}C]$	150-220	170	250-270	170-340
Tensile strength [MPa]	90-120	24-45	70-130	100-125
Tensile modulus [GPa]	3.1-3.8	3.0-5.0	3.1-3.4	3.8-4.5
Elongation [%]	3.0-4.3	0.3	2.0-4.0	2.3-2.9
<i>T</i> _{onset} degradation [°C]	260-340	300-360	400-420	380-400

Property	Epoxy	Phenolics	Cyanate ester	PBZ
$T_{cure} [^{\circ}C]$	25-180	150-190	180-250	160-220
T_{max} use [°C]	180	200	150-200	130-280
Cure schrinkage	≥ 3	0.002	≈3	≈ 0
$T_g \ [^{\circ}C]$	150-220	170	250-270	170-340
Tensile strength [MPa]	ngth [MPa] 90-120 24-45 70-130		100-125	
Tensile modulus [GPa]	3.1-3.8	3.0-5.0	3.1-3.4	3.8-4.5
Elongation [%]	3.0-4.3	0.3	2.0-4.0	2.3-2.9
<i>T</i> _{onset} degradation [°C]	260-340	300-360	400-420	380-400

Property	Epoxy	Phenolics	Cyanate ester	PBZ
$T_{cure} [^{\circ}C]$	25-180	150-190	180-250	160-220
T_{max} use [°C]	180	200	150-200	130-280
Cure schrinkage	≥ 3	0.002	≈3	≈ 0
$T_g \ [^{\circ}C]$	150-220	170	250-270	170-340
Tensile strength [MPa]	gth [MPa] 90-120 24-45 70-130		100-125	
Tensile modulus [GPa]	3.1-3.8	3.0-5.0	3.1-3.4	3.8-4.5
Elongation [%]	3.0-4.3	0.3	2.0-4.0	2.3-2.9
<i>T</i> _{onset} degradation [°C]	260-340	300-360	400-420	380-400

Benzoxazines are quite easy to synthesize

T-DDM benzoxazine

T-DDM is a monocomponent thermoset

T-DDM is a monocomponent thermoset

T-DDM is a monocomponent thermoset

Activation energy ~90kJ Order of reaction ~2.3

$$ln\left(\beta \cdot \frac{d\alpha}{dT}\right) = ln(A) - \left(\frac{E_a}{RT}\right) + n \cdot ln(1-\alpha) + m \cdot ln(\alpha)$$

 E_a in same range as peak temperature methods 							
Univer Overall order of reaction of 2.2 to 2.5							
de Louvain	β [°C/min]	$A[s^{-1}]$	E_a [kJ/mol]	n	m		
	5	$3.99\cdot 10^7$	90.2	1.6	0.6		
	10	$4.01 \cdot 10^7$	89.1	1.6	0.7		
	15	$4.00\cdot 10^7$	88.0	1.7	0.8		

- 1. Weighing and mixing of T-DDM and ZnO powder
- 2. Dissolving resin into chloroform
- 3. Sonication pulses (30 seconds)
- 4. Degassing under vacuum at 150°C in a furnace

			$t_{sonication} \left[\mathbf{s} \right]$			
	ZnO[wt%]	30	90	270	360	540
versité	0.5	X	X	Х		
holique Louvain	1.0		Х			
	2.5		Х			
	5.0	Х	Х	X	Х	X
	10.0		Х			
	25.0		Х			
	50.0		Х			

Dispersions are good up to 5wt% loading

Dispersion with 90s sonication

0.5wt% ZnO

5.0wt% ZnO

Sonication time has little influence

Dispersion at 5.0wt% ZnO

90s sonication

270s sonication

There is a synergic effect between ZnO and BZO

• Curing enthalpy does not follow a simple rule of mixture

There is a synergic effect between ZnO and BZO

• Curing enthalpy does not follow a simple rule of mixture

 Indicates that some chemical bonds might be formed between the resin and the nanoparticles

The charring is greatly improved by ZnO

The effect correlates with the change on kinetics

The effect correlates with the change on kinetics

The matrix degradation is also T°-delayed

The matrix degradation is also T°-delayed

The matrix degradation is also T°-delayed

Conclusions & perspectives

Kinetics

- The activation energy for ROP of T-DDM is about 90kJ/mol
- The order of the ROP reaction is around 2.3 (between 2.2 and 2.5)

Effects of ZnO on thermal stability

- ZnO causes the formation of new chemical bonds in the system
- These bonds are likely responsible for the observed
 - charring improvement
 - fast increase of the degradation temperatures

Effect of ZnO on other benzoxazines?

Acknowledgements

- Region wallonne for financial support
- Leïla Bonnaud for providing resin and advices
- Christian Bailly for supervising this job
- Carl van Tieghem for performing most of this work

Questions?

jeremy.horion@uclouvain.be