

SIMULATION OF LIQUID MOLDING PROCESSES (LCM) FOR CERAMIC MATRIX COMPOSITES (CMC) MANUFACTURING

<u>Yann Duplessis Kergomard¹, William Ros², Arnaud Dereims¹, Cedric Descamps², Marta Perez-Miguel¹, Florent Bouillon², Laurent Dufort¹</u>

¹CoE Composite Virtual Mfg, ESI Group (Bordeaux, France) ²SAFRAN CERAMICS (Le Haillan, France)

PRESENTATION CONTENT

- 1. Introduction
- 2. Process description
- 3. Model description
- 4. Analytical Verification
- 5. Application Example

A Complete & Integrated Offer

Virtual Manufacturing

Welding & Assembly

Virtual Performance Solution

End-to-End Solutions

Virtual Seat Solution

Virtual Performance

Casting

Virtual Environment

Virtual Integration Platform

Decision Support

Virtual Reality

Collaborative decision-making

Engineering services

Consulting Services

Images courtesy of EADS Innovation Works, Harbin Aircraft, Expliseat, Boeing, and EADS Casa Espacio.

Copyright © ESI Group, 2015. All rights reserved.

www.esi-group.com

Copyright © ESI Group, 2017. All rights reserved.

SAFRAN CERAMICS AT A GLANCE

CMC FOR AERONAUTICS : SAFRAN LEADS DEVELOPMENTS TO TARGET COMMERCIAL AIRCRAFT APPLICATIONS

CONTEXT

Oxide/Oxide composites (COX) are comprised of alumina matrix and alumina fibers

Oxide are selected for their good compromise between their performance and cost

Engine Mixers and Nozzles are typical applications for such materials

These parts are manufactured by the "Slurry Transfer Moulding" process, patented by Safran

This work concerns the modelling of this process

Oxide CMC part

PROCESS DESCRIPTION

At all times the medium is comprised of two phase :

- · A non compacted zone where the slurry flows in the inter-tow space
- A compacted phase where a compact granular material (cake) has locally formed

SLURRY MODELLING

PREFORM MODELLING

PREFORM MODELLING

PROBLEM DESCRIPTION

Biphasic flow through porous medium

Slurry flow = Particle transport

Porous medium

Filtration

SOME EQUATIONS

Mass conservation

$$\frac{\partial C}{\partial t} + \underline{v} \cdot \underline{\nabla} C = \frac{1}{\phi} (C - 1) \frac{\partial \sigma}{\partial t}$$
$$\underline{\nabla} \cdot (\underline{v}\phi) = 0$$

Fluid Velocity

 $\underline{v} = \frac{1}{\phi} \underline{U_d} = -\frac{1}{\phi} \frac{1}{\eta} \underline{K} \underline{\nabla} P$

Filtration

$$\frac{\partial \sigma}{\partial t} = \lambda_0 f(\sigma) C - k_r \sigma + S$$

Hypothesis

Dual scale porous medium

$$K^{t} = \frac{1}{\frac{1}{K_{f}} + \frac{1}{K_{d}^{t}}}$$
$$K_{d}^{t} = \frac{1}{h_{k}a^{2}} \frac{(1-\sigma)^{3}}{\sigma^{2}}$$

Surface filtration only

$$S_e = \frac{Q_{out}C_e}{\Omega_e}$$
$$\lambda_0 = k_r = 0$$

13

ANALYTICAL VERIFICATION

Belfort law

$$h = \frac{QC}{S(\sigma_{max} - C)}t$$
$$\Delta p = \frac{\mu Q}{SK}h$$

6.50e+001 6.07e+001 5.63e+001 5.20e+001 4.77e+001 4.33e+001 3.90e+001 3.47e+001 3.03e+001

	Permeability (m ²)	Compaction ratio
Case 1	1,55.10 ⁻¹³	0,6
Case 2	1,2.10 ⁻¹²	0,4
Case 3	5,4.10 ⁻¹⁴	0,8

Thickness

	Permeability (m ²)	Compaction ratio
Case 1	1,55.10 ⁻¹³	0,6
Case 2	1,2.10 ⁻¹²	0,4
Case 3	5,4.10 ⁻¹⁴	0,8

Case 1 Case 2 Case 3 Thickness (mm) Pressure (bar) Case 1 Case 2 $\widehat{\mathbb{X}}$ Case 3 Time (s) Time (s)

ANALYTICAL VERIFICATION

APPLICATION EXAMPLE

Operating Conditions				
Applied Pressure	6 bars			
Vent Pressure	0 bars (relative)			
Slurry concentration	30%			

APPLICATION EXAMPLE - RESULTS

Cake concentration

Pressure

CONCLUSION

Simulation tool allowing macroscopic simulation on real size part

Implementation verified against analytical laws

On-going works on verification and validation with experimental test comparisons

Use of simulation to define optimized injection strategy

Thank You QUESTIONS?

www.esi-group.com/composites www.safran-group.com